Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Interpretable Deep Learning Approach for Skin Cancer Categorization (2312.10696v1)

Published 17 Dec 2023 in eess.IV and cs.CV

Abstract: Skin cancer is a serious worldwide health issue, precise and early detection is essential for better patient outcomes and effective treatment. In this research, we use modern deep learning methods and explainable artificial intelligence (XAI) approaches to address the problem of skin cancer detection. To categorize skin lesions, we employ four cutting-edge pre-trained models: XceptionNet, EfficientNetV2S, InceptionResNetV2, and EfficientNetV2M. Image augmentation approaches are used to reduce class imbalance and improve the generalization capabilities of our models. Our models decision-making process can be clarified because of the implementation of explainable artificial intelligence (XAI). In the medical field, interpretability is essential to establish credibility and make it easier to implement AI driven diagnostic technologies into clinical workflows. We determined the XceptionNet architecture to be the best performing model, achieving an accuracy of 88.72%. Our study shows how deep learning and explainable artificial intelligence (XAI) can improve skin cancer diagnosis, laying the groundwork for future developments in medical image analysis. These technologies ability to allow for early and accurate detection could enhance patient care, lower healthcare costs, and raise the survival rates for those with skin cancer. Source Code: https://github.com/Faysal-MD/An-Interpretable-Deep-Learning?Approach-for-Skin-Cancer-Categorization-IEEE2023

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.