Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

T2M-HiFiGPT: Generating High Quality Human Motion from Textual Descriptions with Residual Discrete Representations (2312.10628v2)

Published 17 Dec 2023 in cs.CV

Abstract: In this study, we introduce T2M-HiFiGPT, a novel conditional generative framework for synthesizing human motion from textual descriptions. This framework is underpinned by a Residual Vector Quantized Variational AutoEncoder (RVQ-VAE) and a double-tier Generative Pretrained Transformer (GPT) architecture. We demonstrate that our CNN-based RVQ-VAE is capable of producing highly accurate 2D temporal-residual discrete motion representations. Our proposed double-tier GPT structure comprises a temporal GPT and a residual GPT. The temporal GPT efficiently condenses information from previous frames and textual descriptions into a 1D context vector. This vector then serves as a context prompt for the residual GPT, which generates the final residual discrete indices. These indices are subsequently transformed back into motion data by the RVQ-VAE decoder. To mitigate the exposure bias issue, we employ straightforward code corruption techniques for RVQ and a conditional dropout strategy, resulting in enhanced synthesis performance. Remarkably, T2M-HiFiGPT not only simplifies the generative process but also surpasses existing methods in both performance and parameter efficacy, including the latest diffusion-based and GPT-based models. On the HumanML3D and KIT-ML datasets, our framework achieves exceptional results across nearly all primary metrics. We further validate the efficacy of our framework through comprehensive ablation studies on the HumanML3D dataset, examining the contribution of each component. Our findings reveal that RVQ-VAE is more adept at capturing precise 3D human motion with comparable computational demand compared to its VQ-VAE counterparts. As a result, T2M-HiFiGPT enables the generation of human motion with significantly increased accuracy, outperforming recent state-of-the-art approaches such as T2M-GPT and Att-T2M.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube