Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Forest Variable Importance-based Selection Algorithm in Class Imbalance Problem (2312.10573v1)

Published 17 Dec 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Random Forest is a machine learning method that offers many advantages, including the ability to easily measure variable importance. Class balancing technique is a well-known solution to deal with class imbalance problem. However, it has not been actively studied on RF variable importance. In this paper, we study the effect of class balancing on RF variable importance. Our simulation results show that over-sampling is effective in correctly measuring variable importance in class imbalanced situations with small sample size, while under-sampling fails to differentiate important and non-informative variables. We then propose a variable selection algorithm that utilizes RF variable importance and its confidence interval. Through an experimental study using many real and artificial datasets, we demonstrate that our proposed algorithm efficiently selects an optimal feature set, leading to improved prediction performance in class imbalance problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.