Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Cross-Linguistic Offensive Language Detection: BERT-Based Analysis of Bengali, Assamese, & Bodo Conversational Hateful Content from Social Media (2312.10528v1)

Published 16 Dec 2023 in cs.CL and cs.LG

Abstract: In today's age, social media reigns as the paramount communication platform, providing individuals with the avenue to express their conjectures, intellectual propositions, and reflections. Unfortunately, this freedom often comes with a downside as it facilitates the widespread proliferation of hate speech and offensive content, leaving a deleterious impact on our world. Thus, it becomes essential to discern and eradicate such offensive material from the realm of social media. This article delves into the comprehensive results and key revelations from the HASOC-2023 offensive language identification result. The primary emphasis is placed on the meticulous detection of hate speech within the linguistic domains of Bengali, Assamese, and Bodo, forming the framework for Task 4: Annihilate Hates. In this work, we used BERT models, including XML-Roberta, L3-cube, IndicBERT, BenglaBERT, and BanglaHateBERT. The research outcomes were promising and showed that XML-Roberta-lagre performed better than monolingual models in most cases. Our team 'TeamBD' achieved rank 3rd for Task 4 - Assamese, & 5th for Bengali.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.