Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Time-Constrained Continuous Subgraph Matching Using Temporal Information for Filtering and Backtracking (2312.10486v1)

Published 16 Dec 2023 in cs.DB

Abstract: Real-time analysis of graphs containing temporal information, such as social media streams, Q&A networks, and cyber data sources, plays an important role in various applications. Among them, detecting patterns is one of the fundamental graph analysis problems. In this paper, we study time-constrained continuous subgraph matching, which detects a pattern with a strict partial order on the edge set in real-time whenever a temporal data graph changes over time. We propose a new algorithm based on two novel techniques. First, we introduce a filtering technique called time-constrained matchable edge that uses temporal information for filtering with polynomial space. Second, we develop time-constrained pruning techniques that reduce the search space by pruning some of the parallel edges in backtracking, utilizing temporal information. Extensive experiments on real and synthetic datasets show that our approach outperforms the state-of-the-art algorithm by up to two orders of magnitude in terms of query processing time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. D. Leprovost, L. Abrouk, N. Cullot, and D. Gross-Amblard, “Temporal semantic centrality for the analysis of communication networks,” in Proceedings of the International Conference on Web Engineering.   Springer, 2012, pp. 177–184.
  2. W. Fan, “Graph pattern matching revised for social network analysis,” in Proceedings of the International Conference on Database Theory, 2012, pp. 8–21.
  3. V. Bhat, A. Gokhale, R. Jadhav, J. Pudipeddi, and L. Akoglu, “Effects of tag usage on question response time,” Social Network Analysis and Mining, vol. 5, no. 1, pp. 1–13, 2015.
  4. C. Joslyn, S. Choudhury, D. Haglin, B. Howe, B. Nickless, and B. Olsen, “Massive scale cyber traffic analysis: a driver for graph database research,” in First International Workshop on Graph Data Management Experiences and Systems, 2013, pp. 1–6.
  5. B. Haslhofer, R. Karl, and E. Filtz, “O bitcoin where art thou? insight into large-scale transaction graphs.” in Joint Proceedings of the Posters and Demos Track of the International Conference on Semantic Systems and the International Workshop on Semantic Change & Evolving Semantics, 2016.
  6. X. Sun, Y. Tan, Q. Wu, B. Chen, and C. Shen, “Tm-miner: Tfs-based algorithm for mining temporal motifs in large temporal network,” IEEE Access, vol. 7, pp. 49 778–49 789, 2019.
  7. W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and E. Chen, “Chronos: a graph engine for temporal graph analysis,” in Proceedings of the Ninth European Conference on Computer Systems, 2014, pp. 1–14.
  8. C. Song, T. Ge, C. Chen, and J. Wang, “Event pattern matching over graph streams,” Proceedings of the VLDB Endowment, vol. 8, no. 4, pp. 413–424, 2014.
  9. Y. Ma, Y. Yuan, M. Liu, G. Wang, and Y. Wang, “Graph simulation on large scale temporal graphs,” GeoInformatica, vol. 24, no. 1, pp. 199–220, 2020.
  10. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal motifs in time-dependent networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2011, no. 11, pp. 119–133, 2011.
  11. P. Liu, A. R. Benson, and M. Charikar, “Sampling methods for counting temporal motifs,” in Proceedings of the ACM International Conference on Web Search and Data Mining, 2019, pp. 294–302.
  12. U. Redmond and P. Cunningham, “Temporal subgraph isomorphism,” in Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.   IEEE, 2013, pp. 1451–1452.
  13. U. Redmond and P. Cunningham, “Subgraph isomorphism in temporal networks,” arXiv preprint arXiv:1605.02174, 2016.
  14. F. Li and Z. Zou, “Subgraph matching on temporal graphs,” Information Sciences, vol. 578, pp. 539–558, 2021.
  15. J. Crawford and T. Milenković, “Cluenet: Clustering a temporal network based on topological similarity rather than denseness,” PloS one, vol. 13, no. 5, p. e0195993, 2018.
  16. M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler, “Practice of streaming and dynamic graphs: Concepts, models, systems, and parallelism,” arXiv preprint arXiv:1912.12740, 2020.
  17. Y. Li, L. Zou, M. T. Özsu, and D. Zhao, “Time constrained continuous subgraph search over streaming graphs,” in Proceedings of the International Conference on Data Engineering.   IEEE, 2019, pp. 1082–1093.
  18. Verizon. (2020) Data Breach Investigations Report. [Online]. Available: https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
  19. W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern matching,” ACM Transactions on Database Systems, vol. 38, no. 3, pp. 1–47, 2013.
  20. C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu, “Graphflow: An active graph database,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2017, pp. 1695–1698.
  21. S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo, “A selectivity based approach to continuous pattern detection in streaming graphs,” in Proceedings of the International Conference on Extending Database Technology, 2015, pp. 157–168.
  22. K. Kim, I. Seo, W.-S. Han, J.-H. Lee, S. Hong, H. Chafi, H. Shin, and G. Jeong, “Turboflux: A fast continuous subgraph matching system for streaming graph data,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2018, pp. 411–426.
  23. S. Min, S. G. Park, K. Park, D. Giammarresi, G. F. Italiano, and W. Han, “Symmetric continuous subgraph matching with bidirectional dynamic programming,” Proceedings of the VLDB Endowment, vol. 14, no. 8, pp. 1298–1310, 2021.
  24. X. Sun, Y. Tan, Q. Wu, and J. Wang, “Hasse diagram based algorithm for continuous temporal subgraph query in graph stream,” in Proceedings of the International Conference on Computer Science and Network Technology.   IEEE, 2017, pp. 241–246.
  25. E. E. Papalexakis, L. Akoglu, and D. Ience, “Do more views of a graph help? community detection and clustering in multi-graphs,” in Proceedings of the 16th International Conference on Information Fusion.   IEEE, 2013, pp. 899–905.
  26. P. Wang, Y. Qi, Y. Sun, X. Zhang, J. Tao, and X. Guan, “Approximately counting triangles in large graph streams including edge duplicates with a fixed memory usage,” Proceedings of the VLDB Endowment, vol. 11, no. 2, pp. 162–175, 2017.
  27. T. Shafie, “A multigraph approach to social network analysis,” journal of Social Structure, vol. 16, no. 1, pp. 1–21, 2015.
  28. A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,” in Proceedings of the ACM International Conference on Web Search and Data Mining, 2017, pp. 601–610.
  29. M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Efficient subgraph matching: Harmonizing dynamic programming, adaptive matching order, and failing set together,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2019, pp. 1429–1446.
  30. J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the ACM, vol. 23, no. 1, pp. 31–42, 1976.
  31. W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2013, pp. 337–348.
  32. F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph matching by postponing cartesian products,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2016, pp. 1199–1214.
  33. H. Kim, Y. Choi, K. Park, X. Lin, S.-H. Hong, and W.-S. Han, “Versatile equivalences: Speeding up subgraph query processing and subgraph matching,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, 2021, pp. 925–937.
  34. S. Sun, X. Sun, B. He, and Q. Luo, “Rapidflow: an efficient approach to continuous subgraph matching,” Proceedings of the VLDB Endowment, vol. 15, no. 11, pp. 2415–2427, 2022.
  35. “Anonymized Internet Traces 2015,” https://catalog.caida.org/dataset/passive_2015_pcap.
  36. J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.stanford.edu/data, 2014.
  37. R. Rossi and N. Ahmed, “The network data repository with interactive graph analytics and visualization,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.
  38. D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink, “Linked stream data processing engines: Facts and figures,” in International Semantic Web Conference.   Springer, 2012, pp. 300–312.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube