Papers
Topics
Authors
Recent
2000 character limit reached

Resolving Crash Bugs via Large Language Models: An Empirical Study (2312.10448v1)

Published 16 Dec 2023 in cs.SE, cs.AI, and cs.CL

Abstract: Crash bugs cause unexpected program behaviors or even termination, requiring high-priority resolution. However, manually resolving crash bugs is challenging and labor-intensive, and researchers have proposed various techniques for their automated localization and repair. ChatGPT, a recent LLM, has garnered significant attention due to its exceptional performance across various domains. This work performs the first investigation into ChatGPT's capability in resolve real-world crash bugs, focusing on its effectiveness in both localizing and repairing code-related and environment-related crash bugs. Specifically, we initially assess ChatGPT's fundamental ability to resolve crash bugs with basic prompts in a single iteration. We observe that ChatGPT performs better at resolving code-related crash bugs compared to environment-related ones, and its primary challenge in resolution lies in inaccurate localization. Additionally, we explore ChatGPT's potential with various advanced prompts. Furthermore, by stimulating ChatGPT's self-planning, it methodically investigates each potential crash-causing environmental factor through proactive inquiry, ultimately identifying the root cause of the crash. Based on our findings, we propose IntDiagSolver, an interaction methodology designed to facilitate precise crash bug resolution through continuous interaction with LLMs. Evaluating IntDiagSolver on multiple LLMs reveals consistent enhancement in the accuracy of crash bug resolution, including ChatGPT, Claude, and CodeLlama.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.