Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From Dialogue to Diagram: Task and Relationship Extraction from Natural Language for Accelerated Business Process Prototyping (2312.10432v1)

Published 16 Dec 2023 in cs.CL and cs.AI

Abstract: The automatic transformation of verbose, natural language descriptions into structured process models remains a challenge of significant complexity - This paper introduces a contemporary solution, where central to our approach, is the use of dependency parsing and Named Entity Recognition (NER) for extracting key elements from textual descriptions. Additionally, we utilize Subject-Verb-Object (SVO) constructs for identifying action relationships and integrate semantic analysis tools, including WordNet, for enriched contextual understanding. A novel aspect of our system is the application of neural coreference resolution, integrated with the SpaCy framework, enhancing the precision of entity linkage and anaphoric references. Furthermore, the system adeptly handles data transformation and visualization, converting extracted information into BPMN (Business Process Model and Notation) diagrams. This methodology not only streamlines the process of capturing and representing business workflows but also significantly reduces the manual effort and potential for error inherent in traditional modeling approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.