Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Proportional Representation in Metric Spaces and Low-Distortion Committee Selection (2312.10369v2)

Published 16 Dec 2023 in cs.GT and cs.AI

Abstract: We introduce a novel definition for a small set R of k points being "representative" of a larger set in a metric space. Given a set V (e.g., documents or voters) to represent, and a set C of possible representatives, our criterion requires that for any subset S comprising a theta fraction of V, the average distance of S to their best theta*k points in R should not be more than a factor gamma compared to their average distance to the best theta*k points among all of C. This definition is a strengthening of proportional fairness and core fairness, but - different from those notions - requires that large cohesive clusters be represented proportionally to their size. Since there are instances for which - unless gamma is polynomially large - no solutions exist, we study this notion in a resource augmentation framework, implicitly stating the constraints for a set R of size k as though its size were only k/alpha, for alpha > 1. Furthermore, motivated by the application to elections, we mostly focus on the "ordinal" model, where the algorithm does not learn the actual distances; instead, it learns only for each point v in V and each candidate pairs c, c' which of c, c' is closer to v. Our main result is that the Expanding Approvals Rule (EAR) of Aziz and Lee is (alpha, gamma) representative with gamma <= 1 + 6.71 * (alpha)/(alpha-1). Our results lead to three notable byproducts. First, we show that the EAR achieves constant proportional fairness in the ordinal model, giving the first positive result on metric proportional fairness with ordinal information. Second, we show that for the core fairness objective, the EAR achieves the same asymptotic tradeoff between resource augmentation and approximation as the recent results of Li et al., which used full knowledge of the metric. Finally, our results imply a very simple single-winner voting rule with metric distortion at most 44.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube