Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Opara: Exploiting Operator Parallelism for Expediting DNN Inference on GPUs (2312.10351v2)

Published 16 Dec 2023 in cs.DC and cs.AI

Abstract: GPUs have become the \emph{defacto} hardware devices for accelerating Deep Neural Network (DNN) inference workloads. However, the conventional \emph{sequential execution mode of DNN operators} in mainstream deep learning frameworks cannot fully utilize GPU resources, even with the operator fusion enabled, due to the increasing complexity of model structures and a greater diversity of operators. Moreover, the \emph{inadequate operator launch order} in parallelized execution scenarios can lead to GPU resource wastage and unexpected performance interference among operators. In this paper, we propose \emph{Opara}, a resource- and interference-aware DNN \underline{Op}erator \underline{para}llel scheduling framework to accelerate DNN inference on GPUs. Specifically, \emph{Opara} first employs \texttt{CUDA Streams} and \texttt{CUDA Graph} to \emph{parallelize} the execution of multiple operators automatically. To further expedite DNN inference, \emph{Opara} leverages the resource demands of operators to judiciously adjust the operator launch order on GPUs, overlapping the execution of compute-intensive and memory-intensive operators. We implement and open source a prototype of \emph{Opara} based on PyTorch in a \emph{non-intrusive} manner. Extensive prototype experiments with representative DNN and Transformer-based models demonstrate that \emph{Opara} outperforms the default sequential \texttt{CUDA Graph} in PyTorch and the state-of-the-art operator parallelism systems by up to $1.68\times$ and $1.29\times$, respectively, yet with acceptable runtime overhead.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube