Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

MMBaT: A Multi-task Framework for mmWave-based Human Body Reconstruction and Translation Prediction (2312.10346v1)

Published 16 Dec 2023 in cs.CV

Abstract: Human body reconstruction with Millimeter Wave (mmWave) radar point clouds has gained significant interest due to its ability to work in adverse environments and its capacity to mitigate privacy concerns associated with traditional camera-based solutions. Despite pioneering efforts in this field, two challenges persist. Firstly, raw point clouds contain massive noise points, usually caused by the ambient objects and multi-path effects of Radio Frequency (RF) signals. Recent approaches typically rely on prior knowledge or elaborate preprocessing methods, limiting their applicability. Secondly, even after noise removal, the sparse and inconsistent body-related points pose an obstacle to accurate human body reconstruction. To address these challenges, we introduce mmBaT, a novel multi-task deep learning framework that concurrently estimates the human body and predicts body translations in subsequent frames to extract body-related point clouds. Our method is evaluated on two public datasets that are collected with different radar devices and noise levels. A comprehensive comparison against other state-of-the-art methods demonstrates our method has a superior reconstruction performance and generalization ability from noisy raw data, even when compared to methods provided with body-related point clouds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.