Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow (2312.10235v2)

Published 15 Dec 2023 in cs.LG and nlin.CD

Abstract: Data-driven reduced-order models of the dynamics of complex flows are important for tasks related to design, understanding, prediction, and control. Many flows obey symmetries, and the present work illustrates how these can be exploited to yield highly efficient low-dimensional data-driven models for chaotic flows. In particular, incorporating symmetries both guarantees that the reduced order model automatically respects them and dramatically increases the effective density of data sampling. Given data for the long-time dynamics of a system, and knowing the set of continuous and discrete symmetries it obeys, the first step in the methodology is to identify a "fundamental chart", a region in the state space of the flow to which all other regions can be mapped by a symmetry operation, and a set of criteria indicating what mapping takes each point in state space into that chart. We then find a low-dimensional coordinate representation of the data in the fundamental chart with the use of an autoencoder architecture that also provides an estimate of the dimension of the invariant manifold where data lie. Finally, we learn dynamics on this manifold with the use of neural ordinary differential equations. We apply this method, denoted "symmetry charting" to simulation data from two-dimensional Kolmogorov flow in a chaotic bursting regime. This system has a continuous translation symmetry, and discrete rotation and shift-reflect symmetries. With this framework we observe that less data is needed to learn accurate data-driven models, more robust estimates of the manifold dimension are obtained, equivariance of the NSE is satisfied, better short-time tracking with respect to the true data is observed, and long-time statistics are correctly captured.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 44 likes.

Upgrade to Pro to view all of the tweets about this paper: