Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

3FM: Multi-modal Meta-learning for Federated Tasks (2312.10179v1)

Published 15 Dec 2023 in cs.LG

Abstract: We present a novel approach in the domain of federated learning (FL), particularly focusing on addressing the challenges posed by modality heterogeneity, variability in modality availability across clients, and the prevalent issue of missing data. We introduce a meta-learning framework specifically designed for multimodal federated tasks. Our approach is motivated by the need to enable federated models to robustly adapt when exposed to new modalities, a common scenario in FL where clients often differ in the number of available modalities. The effectiveness of our proposed framework is demonstrated through extensive experimentation on an augmented MNIST dataset, enriched with audio and sign language data. We demonstrate that the proposed algorithm achieves better performance than the baseline on a subset of missing modality scenarios with careful tuning of the meta-learning rates. This is a shortened report, and our work will be extended and updated soon.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.