Frequency-domain Gaussian Process Models for $H_\infty$ Uncertainties (2312.10106v1)
Abstract: Complex-valued Gaussian processes are commonly used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an $H_\infty$ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers. We then establish how an $H_\infty$ Gaussian process can serve as a prior for Bayesian system identification and as a probabilistic uncertainty model for probabilistic robust control. In particular, we compute formulas for refining the uncertainty model by conditioning on frequency-domain data and for upper-bounding the probability that the realizations of the process satisfy a given integral quadratic constraint.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.