Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Review of Repository Level Prompting for LLMs (2312.10101v1)

Published 15 Dec 2023 in cs.SE and cs.CL

Abstract: As coding challenges become more complex, recent advancements in LLMs have led to notable successes, such as achieving a 94.6\% solve rate on the HumanEval benchmark. Concurrently, there is an increasing commercial push for repository-level inline code completion tools, such as GitHub Copilot and Tab Nine, aimed at enhancing developer productivity. This paper delves into the transition from individual coding problems to repository-scale solutions, presenting a thorough review of the current literature on effective LLM prompting for code generation at the repository level. We examine approaches that will work with black-box LLMs such that they will be useful and applicable to commercial use cases, and their applicability in interpreting code at a repository scale. We juxtapose the Repository-Level Prompt Generation technique with RepoCoder, an iterative retrieval and generation method, to highlight the trade-offs inherent in each approach and to establish best practices for their application in cutting-edge coding benchmarks. The interplay between iterative refinement of prompts and the development of advanced retrieval systems forms the core of our discussion, offering a pathway to significantly improve LLM performance in code generation tasks. Insights from this study not only guide the application of these methods but also chart a course for future research to integrate such techniques into broader software engineering contexts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.