Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generative AI in Writing Research Papers: A New Type of Algorithmic Bias and Uncertainty in Scholarly Work (2312.10057v1)

Published 4 Dec 2023 in cs.CY and cs.HC

Abstract: The use of AI in research across all disciplines is becoming ubiquitous. However, this ubiquity is largely driven by hyperspecific AI models developed during scientific studies for accomplishing a well-defined, data-dense task. These AI models introduce apparent, human-recognizable biases because they are trained with finite, specific data sets and parameters. However, the efficacy of using LLMs -- and LLM-powered generative AI tools, such as ChatGPT -- to assist the research process is currently indeterminate. These generative AI tools, trained on general and imperceptibly large datasets along with human feedback, present challenges in identifying and addressing biases. Furthermore, these models are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts -- which can be unintentionally performed by human researchers, resulting in harmful outputs. These outputs are reinforced in research -- where an increasing number of individuals have begun to use generative AI to compose manuscripts. Efforts into AI interpretability lag behind development, and the implicit variations that occur when prompting and providing context to a chatbot introduce uncertainty and irreproducibility. We thereby find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias and has unintended side effects that are largely detrimental to academia, knowledge production, and communicating research.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)