Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline Pre-Training with Model Based Augmentation (2312.09844v2)

Published 15 Dec 2023 in cs.LG and cs.AI

Abstract: Offline reinforcement learning leverages pre-collected datasets of transitions to train policies. It can serve as effective initialization for online algorithms, enhancing sample efficiency and speeding up convergence. However, when such datasets are limited in size and quality, offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance. In this paper we propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective. Our approach leverages a world model of the environment trained on the offline dataset to augment states during offline pre-training. We evaluate our approach on a variety of MuJoCo robotic tasks and our results show it can jump-start online fine-tuning and substantially reduce - in some cases by an order of magnitude - the required number of environment interactions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.