Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient Based Hybridization of PSO (2312.09703v1)

Published 15 Dec 2023 in cs.NE and cs.AI

Abstract: Particle Swarm Optimization (PSO) has emerged as a powerful metaheuristic global optimization approach over the past three decades. Its appeal lies in its ability to tackle complex multidimensional problems that defy conventional algorithms. However, PSO faces challenges, such as premature stagnation in single-objective scenarios and the need to strike a balance between exploration and exploitation. Hybridizing PSO by integrating its cooperative nature with established optimization techniques from diverse paradigms offers a promising solution. In this paper, we investigate various strategies for synergizing gradient-based optimizers with PSO. We introduce different hybridization principles and explore several approaches, including sequential decoupled hybridization, coupled hybridization, and adaptive hybridization. These strategies aim to enhance the efficiency and effectiveness of PSO, ultimately improving its ability to navigate intricate optimization landscapes. By combining the strengths of gradient-based methods with the inherent social dynamics of PSO, we seek to address the critical objectives of intelligent exploration and exploitation in complex optimization tasks. Our study delves into the comparative merits of these hybridization techniques and offers insights into their application across different problem domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube