Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robustness Verification of Deep Reinforcement Learning Based Control Systems using Reward Martingales (2312.09695v1)

Published 15 Dec 2023 in cs.AI

Abstract: Deep Reinforcement Learning (DRL) has gained prominence as an effective approach for control systems. However, its practical deployment is impeded by state perturbations that can severely impact system performance. Addressing this critical challenge requires robustness verification about system performance, which involves tackling two quantitative questions: (i) how to establish guaranteed bounds for expected cumulative rewards, and (ii) how to determine tail bounds for cumulative rewards. In this work, we present the first approach for robustness verification of DRL-based control systems by introducing reward martingales, which offer a rigorous mathematical foundation to characterize the impact of state perturbations on system performance in terms of cumulative rewards. Our verified results provide provably quantitative certificates for the two questions. We then show that reward martingales can be implemented and trained via neural networks, against different types of control policies. Experimental results demonstrate that our certified bounds tightly enclose simulation outcomes on various DRL-based control systems, indicating the effectiveness and generality of the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.