Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review (2312.09454v2)

Published 15 Nov 2023 in eess.SP, cs.HC, and cs.LG

Abstract: Uncertainty Quantification (UQ) has gained traction in an attempt to improve the interpretability and robustness of machine learning predictions. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electrooculography (EOG), and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal-to-noise ratio, and good human interpretability is pivotal for medical applications. In this paper, we review the state of the art of applying Uncertainty Quantification to Machine Learning tasks in the biosignal domain. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. We address misconceptions in the field, provide recommendations for future work, and discuss gaps in the literature in relation to diagnostic implementations as well as control for prostheses or brain-computer interfaces. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty-model in a (clinical) environment

Citations (1)

Summary

We haven't generated a summary for this paper yet.