Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Algorithm for Deep Active Learning under Imbalance via Optimal Separation (2312.09196v4)

Published 14 Dec 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Class imbalance severely impacts machine learning performance on minority classes in real-world applications. While various solutions exist, active learning offers a fundamental fix by strategically collecting balanced, informative labeled examples from abundant unlabeled data. We introduce DIRECT, an algorithm that identifies class separation boundaries and selects the most uncertain nearby examples for annotation. By reducing the problem to one-dimensional active learning, DIRECT leverages established theory to handle batch labeling and label noise -- another common challenge in data annotation that particularly affects active learning methods. Our work presents the first comprehensive study of active learning under both class imbalance and label noise. Extensive experiments on imbalanced datasets show DIRECT reduces annotation costs by over 60\% compared to state-of-the-art active learning methods and over 80\% versus random sampling, while maintaining robustness to label noise.

Citations (4)

Summary

We haven't generated a summary for this paper yet.