Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improved Algorithm for Deep Active Learning under Imbalance via Optimal Separation (2312.09196v4)

Published 14 Dec 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Class imbalance severely impacts machine learning performance on minority classes in real-world applications. While various solutions exist, active learning offers a fundamental fix by strategically collecting balanced, informative labeled examples from abundant unlabeled data. We introduce DIRECT, an algorithm that identifies class separation boundaries and selects the most uncertain nearby examples for annotation. By reducing the problem to one-dimensional active learning, DIRECT leverages established theory to handle batch labeling and label noise -- another common challenge in data annotation that particularly affects active learning methods. Our work presents the first comprehensive study of active learning under both class imbalance and label noise. Extensive experiments on imbalanced datasets show DIRECT reduces annotation costs by over 60\% compared to state-of-the-art active learning methods and over 80\% versus random sampling, while maintaining robustness to label noise.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.