PI3D: Efficient Text-to-3D Generation with Pseudo-Image Diffusion (2312.09069v2)
Abstract: Diffusion models trained on large-scale text-image datasets have demonstrated a strong capability of controllable high-quality image generation from arbitrary text prompts. However, the generation quality and generalization ability of 3D diffusion models is hindered by the scarcity of high-quality and large-scale 3D datasets. In this paper, we present PI3D, a framework that fully leverages the pre-trained text-to-image diffusion models' ability to generate high-quality 3D shapes from text prompts in minutes. The core idea is to connect the 2D and 3D domains by representing a 3D shape as a set of Pseudo RGB Images. We fine-tune an existing text-to-image diffusion model to produce such pseudo-images using a small number of text-3D pairs. Surprisingly, we find that it can already generate meaningful and consistent 3D shapes given complex text descriptions. We further take the generated shapes as the starting point for a lightweight iterative refinement using score distillation sampling to achieve high-quality generation under a low budget. PI3D generates a single 3D shape from text in only 3 minutes and the quality is validated to outperform existing 3D generative models by a large margin.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.