Papers
Topics
Authors
Recent
2000 character limit reached

Decremental Matching in General Weighted Graphs (2312.08996v1)

Published 14 Dec 2023 in cs.DS

Abstract: In this paper, we consider the problem of maintaining a $(1-\varepsilon)$-approximate maximum weight matching in a dynamic graph $G$, while the adversary makes changes to the edges of the graph. In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and Peng gave an algorithm for this problem with an update time of $\tilde{O}{\varepsilon}(\sqrt{m})$. We study a natural relaxation of this problem, namely the decremental model, where the adversary is only allowed to delete edges. For the cardinality version of this problem in general (possibly, non-bipartite) graphs, Assadi, Bernstein, and Dudeja gave a decremental algorithm with update time $O{\varepsilon}(\text{poly}(\log n))$. However, beating $\tilde{O}{\varepsilon}(\sqrt{m})$ update time remained an open problem for the \emph{weighted} version in \emph{general graphs}. In this paper, we bridge the gap between unweighted and weighted general graphs for the decremental setting. We give a $O{\varepsilon}(\text{poly}(\log n))$ update time algorithm that maintains a $(1-\varepsilon)$-approximate maximum weight matching under adversarial deletions. Like the decremental algorithm of Assadi, Bernstein, and Dudeja, our algorithm is randomized, but works against an adaptive adversary. It also matches the time bound for the cardinality version upto dependencies on $\varepsilon$ and a $\log R$ factor, where $R$ is the ratio between the maximum and minimum edge weight in $G$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.