Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking (2312.08924v2)

Published 14 Dec 2023 in cs.CV

Abstract: Composed image retrieval attempts to retrieve an image of interest from gallery images through a composed query of a reference image and its corresponding modified text. It has recently attracted attention due to the collaboration of information-rich images and concise language to precisely express the requirements of target images. Most current composed image retrieval methods follow a supervised learning approach to training on a costly triplet dataset composed of a reference image, modified text, and a corresponding target image. To avoid difficult to-obtain labeled triplet training data, zero-shot composed image retrieval (ZS-CIR) has been introduced, which aims to retrieve the target image by learning from image-text pairs (self-supervised triplets), without the need for human-labeled triplets. However, this self-supervised triplet learning approach is computationally less effective and less understandable as it assumes the interaction between image and text is conducted with implicit query embedding without explicit semantical interpretation. In this work, we present a new training-free zero-shot composed image retrieval method which translates the query into explicit human-understandable text. This helps improve model learning efficiency to enhance the generalization capacity of foundation models. Further, we introduce a Local Concept Re-ranking (LCR) mechanism to focus on discriminative local information extracted from the modified instructions. Extensive experiments on four ZS-CIR benchmarks show that our method achieves comparable performances to that of the state of-the-art triplet training based methods, but significantly outperforms other training-free methods on the open domain datasets (CIRR, CIRCO and COCO), as well as the fashion domain dataset (FashionIQ).

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.