HeadRecon: High-Fidelity 3D Head Reconstruction from Monocular Video (2312.08863v1)
Abstract: Recently, the reconstruction of high-fidelity 3D head models from static portrait image has made great progress. However, most methods require multi-view or multi-illumination information, which therefore put forward high requirements for data acquisition. In this paper, we study the reconstruction of high-fidelity 3D head models from arbitrary monocular videos. Non-rigid structure from motion (NRSFM) methods have been widely used to solve such problems according to the two-dimensional correspondence between different frames. However, the inaccurate correspondence caused by high-complex hair structures and various facial expression changes would heavily influence the reconstruction accuracy. To tackle these problems, we propose a prior-guided dynamic implicit neural network. Specifically, we design a two-part dynamic deformation field to transform the current frame space to the canonical one. We further model the head geometry in the canonical space with a learnable signed distance field (SDF) and optimize it using the volumetric rendering with the guidance of two-main head priors to improve the reconstruction accuracy and robustness. Extensive ablation studies and comparisons with state-of-the-art methods demonstrate the effectiveness and robustness of our proposed method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.