Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of Petrov-Galerkin Krylov methods for algebraic Riccati equations (2312.08855v2)

Published 14 Dec 2023 in math.NA and cs.NA

Abstract: A class of (block) rational Krylov subspace based projection method for solving large-scale continuous-time algebraic Riccati equation (CARE) $0 = \mathcal{R}(X) := AHX + XA + CHC - XBBHX$ with a large, sparse $A$ and $B$ and $C$ of full low rank is proposed. The CARE is projected onto a block rational Krylov subspace $\mathcal{K}_j$ spanned by blocks of the form $(AH - s_kI){-1}CH$ for some shifts $s_k, k = 1, \ldots, j.$ The considered projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi decomposition associated to $\mathcal{K}_j.$ The resulting projected Riccati equation is solved for the small square Hermitian $Y_j.$ Then the Hermitian low-rank approximation $X_j = Z_jY_jZ_jH$ to $X$ is set up where the columns of $Z_j$ span $\mathcal{K}_j.$ The residual norm $|R(X_j )|_F$ can be computed efficiently via the norm of a readily available $2p \times 2p$ matrix. We suggest to reduce the rank of the approximate solution $X_j$ even further by truncating small eigenvalues from $X_j.$ This truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of $\mathcal{K}_j.$ This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. An invariant subspace method for large-scale algebraic Riccati equation. Appl. Numer. Math., 60(11):1067–1082, 2010. Special Issue: 9th IMACS International Symposium on Iterative Methods in Scientific Computing (IISIMSC 2008).
  2. Rational interpolation methods for symmetric Sylvester equations. ETNA, Electron. Trans. Numer. Anal., 42:147–164, 2014.
  3. On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces. Linear Algebra Appl., 488:430–459, 2016.
  4. RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations. Numer. Math., 138(2):301–330, 2018.
  5. A Numerical Comparison of Different Solvers for Large-Scale, Continuous-Time Algebraic Riccati Equations and LQR Problems. SIAM J. Sci. Comput., 42(2):A957–A996, 2020.
  6. An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations. Appl. Numer. Math., 108:125–142, 2016.
  7. Linear-quadratic regulator design for optimal cooling of steel profiles. Technical Report SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik, TU Chemnitz, D-09107 Chemnitz (Germany), 2005.
  8. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt., 36(1):32–52, 2013.
  9. A Rational Krylov Toolbox for MATLAB, 2014. MIMS EPrint 2014.56, Manchester Institute for Mathematical Sciences, the University of Manchester, Manchester, UK. http://rktoolbox.org.
  10. Christian Bertram. Efficient solution of large-scale Riccati equations and an ODE framework for linear matrix equations. Dissertation, Technische Universität Braunschweig, Braunschweig, Germany, 2021. Online unter: https://nbn-resolving.org/urn:nbn:de:gbv:084-2021110311426.
  11. On a family of low-rank algorithms for large-scale algebraic Riccati equations. arXiv preprint 2023, https://arxiv.org/abs/2304.01624.
  12. Dario Andrea Bini, Bruno Iannazzo and Beatrice Meini. Numerical Solution of Algebraic Riccati Equations. Fundamentals of Algorithms 9, SIAM, Philadelphia, 2011.
  13. Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software, 38(1), Article 1 (December 2011), 25 pages, 2011.
  14. Extended Krylov subspaces: Approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl., 19:755–771, 1998.
  15. The Block Rational Arnoldi Method. SIAM J. Matrix Anal. Appl., 41(2):365–388, 2020.
  16. Heike Faßbender. Matlab Code for ”A rational Krylov subspace based projection method for solving large-scale algebraic Riccati equations via low-rank approximations”, 2023. see https://doi.org/10.5281/zenodo.10376184.
  17. An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. ETNA, Electron. Trans. Numer. Anal., 33:53–62, 2009.
  18. A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl., 17:615–638, 2010.
  19. Algebraic Riccati equations. Oxford: Clarendon Press, 1995.
  20. A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebra Appl., 22(1):26–47, 2015.
  21. Oberwolfach Benchmark Collection. Steel profile. Hosted at MORwiki – Model Order Reduction Wiki, 2005.
  22. Davide Palitta. The projected Newton-Kleinman method for the algebraic Riccati equation, arXiv preprint 2019, https://arxiv.org/abs/1901.10199.
  23. T. Penzl. Lyapack - a MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear–quadratic optimal control problems. NETLIB, 1999. Version 1.0.
  24. Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl., 58:391–405, 1984.
  25. Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. Matrix pairs. Linear Algebra Appl., 198:283–295, 1994.
  26. Axel Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput., 19:1535–1551, 1998.
  27. M-M.E.S.S.-2.2 – the matrix equations sparse solvers library, February 2022. See 10.5281/zenodo.5938237 or https://www.mpi-magdeburg.mpg.de/projects/mess.
  28. Valeria Simoncini. Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl., 37(4):1655–1674, 2016.
  29. On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal., 34(3):904–920, 2014.
  30. The MORwiki Community. MORwiki - Model Order Reduction Wiki. http://modelreduction.org.
  31. A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations. SIAM J. Matrix Anal. Appl., 31(5):2553–2579, 2010.
  32. Thomas Wolf. ℋ2subscriptℋ2\mathcal{H}_{2}caligraphic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT pseudo-optimal model order reduction. Dissertation, Technische Universität München, München, Germany, 2014.
  33. Ngai Wong and V. Balakrishnan. Quadratic alternating direction implicit iteration for the fast solution of algebraic Riccati equations. In 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pages 373–376, 2005.
  34. Fast positive-real balanced truncation via quadratic alternating direction implicit iteration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(9):1725–1731, 2007.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Christian Bertram (7 papers)
  2. Heike Faßbender (14 papers)

Summary

We haven't generated a summary for this paper yet.