Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Hybrid Eye Typing Interfaces with Word and Letter Prediction: A Comprehensive Evaluation (2312.08731v1)

Published 14 Dec 2023 in cs.HC

Abstract: Eye typing interfaces enable a person to enter text into an interface using only their own eyes. But despite the inherent advantages of touchless operation and intuitive design, such eye-typing interfaces often suffer from slow typing speeds, resulting in slow words per minute (WPM) counts. In this study, we add word and letter prediction to the eye-typing interface and investigate users' typing performance as well as their subjective experience while using the interface. In experiment 1, we compared three typing interfaces with letter prediction (LP), letter+word prediction (L+WP), and no prediction (NoP), respectively. We found that the interface with L+WP achieved the highest average text entry speed (5.48 WPM), followed by the interface with LP (3.42 WPM), and the interface with NoP (3.39 WPM). Participants were able to quickly understand the procedural design for word prediction and perceived this function as very helpful. Compared to LP and NoP, participants needed more time to familiarize themselves with L+WP in order to reach a plateau regarding text entry speed. Experiment 2 explored training effects in L+WP interfaces. Two moving speeds were implemented: slow (6.4{\deg}/s same speed as in experiment 1) and fast (10{\deg}/s). The study employed a mixed experimental design, incorporating moving speeds as a between-subjects factor, to evaluate its influence on typing performance throughout 10 consecutive training sessions. The results showed that the typing speed reached 6.17 WPM for the slow group and 7.35 WPM for the fast group after practice. Overall, the two experiments show that adding letter and word prediction to eye-typing interfaces increases typing speeds. We also find that more extended training is required to achieve these high typing speeds.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube