Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding (2312.08697v1)

Published 14 Dec 2023 in cs.CV and cs.LG

Abstract: Incomplete multi-view clustering becomes an important research problem, since multi-view data with missing values are ubiquitous in real-world applications. Although great efforts have been made for incomplete multi-view clustering, there are still some challenges: 1) most existing methods didn't make full use of multi-view information to deal with missing values; 2) most methods just employ the consistent information within multi-view data but ignore the complementary information; 3) For the existing incomplete multi-view clustering methods, incomplete multi-view representation learning and clustering are treated as independent processes, which leads to performance gap. In this work, we proposed a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC). Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem. Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information while instance-level contrastive learning for latent representation is designed to employ the consistent information. Thirdly, an end-to-end framework is proposed to integrate multi-view missing values handling, multi-view representation learning and clustering assignment for joint optimization. Experiments compared with state-of-the-art approaches demonstrated the effectiveness and superiority of our method. Our code is publicly available at https://github.com/liunian-Jay/ICMVC.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube