Papers
Topics
Authors
Recent
2000 character limit reached

Permutation-Invariant Graph Partitioning:How Graph Neural Networks Capture Structural Interactions?

Published 14 Dec 2023 in cs.LG and cs.AI | (2312.08671v2)

Abstract: Graph Neural Networks (GNNs) have paved the way for being a cornerstone in graph-related learning tasks. Yet, the ability of GNNs to capture structural interactions within graphs remains under-explored. In this work, we address this gap by drawing on the insight that permutation invariant graph partitioning enables a powerful way of exploring structural interactions. We establish theoretical connections between permutation invariant graph partitioning and graph isomorphism, and then propose Graph Partitioning Neural Networks (GPNNs), a novel architecture that efficiently enhances the expressive power of GNNs in learning structural interactions. We analyze how partitioning schemes and structural interactions contribute to GNN expressivity and their trade-offs with complexity. Empirically, we demonstrate that GPNNs outperform existing GNN models in capturing structural interactions across diverse graph benchmark tasks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.