Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Permutation-Invariant Graph Partitioning:How Graph Neural Networks Capture Structural Interactions? (2312.08671v2)

Published 14 Dec 2023 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have paved the way for being a cornerstone in graph-related learning tasks. Yet, the ability of GNNs to capture structural interactions within graphs remains under-explored. In this work, we address this gap by drawing on the insight that permutation invariant graph partitioning enables a powerful way of exploring structural interactions. We establish theoretical connections between permutation invariant graph partitioning and graph isomorphism, and then propose Graph Partitioning Neural Networks (GPNNs), a novel architecture that efficiently enhances the expressive power of GNNs in learning structural interactions. We analyze how partitioning schemes and structural interactions contribute to GNN expressivity and their trade-offs with complexity. Empirically, we demonstrate that GPNNs outperform existing GNN models in capturing structural interactions across diverse graph benchmark tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube