Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MmAP : Multi-modal Alignment Prompt for Cross-domain Multi-task Learning (2312.08636v1)

Published 14 Dec 2023 in cs.CV

Abstract: Multi-Task Learning (MTL) is designed to train multiple correlated tasks simultaneously, thereby enhancing the performance of individual tasks. Typically, a multi-task network structure consists of a shared backbone and task-specific decoders. However, the complexity of the decoders increases with the number of tasks. To tackle this challenge, we integrate the decoder-free vision-LLM CLIP, which exhibits robust zero-shot generalization capability. Recently, parameter-efficient transfer learning methods have been extensively explored with CLIP for adapting to downstream tasks, where prompt tuning showcases strong potential. Nevertheless, these methods solely fine-tune a single modality (text or visual), disrupting the modality structure of CLIP. In this paper, we first propose Multi-modal Alignment Prompt (MmAP) for CLIP, which aligns text and visual modalities during fine-tuning process. Building upon MmAP, we develop an innovative multi-task prompt learning framework. On the one hand, to maximize the complementarity of tasks with high similarity, we utilize a gradient-driven task grouping method that partitions tasks into several disjoint groups and assign a group-shared MmAP to each group. On the other hand, to preserve the unique characteristics of each task, we assign an task-specific MmAP to each task. Comprehensive experiments on two large multi-task learning datasets demonstrate that our method achieves significant performance improvements compared to full fine-tuning while only utilizing approximately 0.09% of trainable parameters.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.