Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking (2312.08514v2)

Published 13 Dec 2023 in cs.CV

Abstract: Video Object Segmentation (VOS) has emerged as an increasingly important problem with availability of larger datasets and more complex and realistic settings, which involve long videos with global motion (e.g, in egocentric settings), depicting small objects undergoing both rigid and non-rigid (including state) deformations. While a number of recent approaches have been explored for this task, these data characteristics still present challenges. In this work we propose a novel, clip-based DETR-style encoder-decoder architecture, which focuses on systematically analyzing and addressing aforementioned challenges. Specifically, we propose a novel transformation-aware loss that focuses learning on portions of the video where an object undergoes significant deformations -- a form of "soft" hard examples mining. Further, we propose a multiplicative time-coded memory, beyond vanilla additive positional encoding, which helps propagate context across long videos. Finally, we incorporate these in our proposed holistic multi-scale video transformer for tracking via multi-scale memory matching and decoding to ensure sensitivity and accuracy for long videos and small objects. Our model enables on-line inference with long videos in a windowed fashion, by breaking the video into clips and propagating context among them. We illustrate that short clip length and longer memory with learned time-coding are important design choices for improved performance. Collectively, these technical contributions enable our model to achieve new state-of-the-art (SoTA) performance on two complex egocentric datasets -- VISOR and VOST, while achieving comparable to SoTA results on the conventional VOS benchmark, DAVIS'17. A series of detailed ablations validate our design choices as well as provide insights into the importance of parameter choices and their impact on performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.