Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision Transformer-Based Deep Learning for Histologic Classification of Endometrial Cancer (2312.08479v2)

Published 13 Dec 2023 in cs.CV

Abstract: Endometrial cancer, the fourth most common cancer in females in the United States, with the lifetime risk for developing this disease is approximately 2.8% in women. Precise histologic evaluation and molecular classification of endometrial cancer is important for effective patient management and determining the best treatment modalities. This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and a vision transformer for aggregating these features and classifying slides based on their visual characteristics into high- and low- grade. The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health. It classifies these slides into low-grade (Endometroid Grades 1 and 2) and high-grade (endometroid carcinoma FIGO grade 3, uterine serous carcinoma, carcinosarcoma) categories. EndoNet was evaluated on an internal test set of 110 patients and an external test set of 100 patients from the public TCGA database. The model achieved a weighted average F1-score of 0.91 (95% CI: 0.86-0.95) and an AUC of 0.95 (95% CI: 0.89-0.99) on the internal test, and 0.86 (95% CI: 0.80-0.94) for F1-score and 0.86 (95% CI: 0.75-0.93) for AUC on the external test. Pending further validation, EndoNet has the potential to support pathologists without the need of manual annotations in classifying the grades of gynecologic pathology tumors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube