Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms with Real-captured Hybrid Dataset (2312.08220v1)

Published 13 Dec 2023 in cs.CV

Abstract: Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed. Complementing the rich texture and color perception of traditional image frames, the hybrid camera system of event and frame-based cameras enables high-performance imaging. With the assistance of event cameras, high-quality image/video enhancement methods make it possible to break the limits of traditional frame-based cameras, especially exposure time, resolution, dynamic range, and frame rate limits. This paper focuses on five event-aided image and video enhancement tasks (i.e., event-based video reconstruction, event-aided high frame rate video reconstruction, image deblurring, image super-resolution, and high dynamic range image reconstruction), provides an analysis of the effects of different event properties, a real-captured and ground truth labeled benchmark dataset, a unified benchmarking of state-of-the-art methods, and an evaluation for two mainstream event simulators. In detail, this paper collects a real-captured evaluation dataset EventAid for five event-aided image/video enhancement tasks, by using "Event-RGB" multi-camera hybrid system, taking into account scene diversity and spatiotemporal synchronization. We further perform quantitative and visual comparisons for state-of-the-art algorithms, provide a controlled experiment to analyze the performance limit of event-aided image deblurring methods, and discuss open problems to inspire future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×\times×128 120 db 15 μ𝜇\muitalic_μs latency asynchronous temporal contrast vision sensor,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, 2008.
  2. G. Taverni, D. P. Moeys, C. Li, C. Cavaco, V. Motsnyi, D. S. S. Bello, and T. Delbruck, “Front and back illuminated dynamic and active pixel vision sensors comparison,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 677–681, 2018.
  3. C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay, “Opportunities for neuromorphic computing algorithms and applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19, 2022.
  4. G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza, “Event-based vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–180, 2022.
  5. C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240 × 180 130 db 3 µs latency global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, 2014.
  6. S. Chen and M. Guo, “Live demonstration: Celex-V: A 1m pixel multi-mode event-based sensor,” in Proc. of Computer Vision and Pattern Recognition Workshops (CVPRW), 2019.
  7. H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and high dynamic range video with an event camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp. 1964–1980, 2021.
  8. F. Paredes-Vallés and G. C. H. E. de Croon, “Back to event basics: Self-supervised learning of image reconstruction for event cameras via photometric constancy,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2021.
  9. R. Christian, G. Gottfried, and P. Thomas, “Real-time intensity-image reconstruction for event cameras using manifold regularisation,” in Proc. of British Machine Vision Conference (BMVC), 2016.
  10. C. Simon Chane, S.-H. Ieng, C. Posch, and R. B. Benosman, “Event-based tone mapping for asynchronous time-based image sensor,” Frontiers in Neuroscience, vol. 10, 2016.
  11. A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “EV-FlowNet: Self-supervised optical flow estimation for event-based cameras,” in Proc. of Robotics: Science and Systems (RSS), 2018.
  12. C. Lee, A. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and K. Roy, “Spike-FlowNet: Event-based optical flow estimation with energy-efficient hybrid neural networks,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  13. A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised event-based learning of optical flow, depth, and egomotion,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 989–997, 2019.
  14. G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2018.
  15. H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “EMVS: Event-based multi-view stereo—3D reconstruction with an event camera in real-time,” International Journal of Computer Vision, vol. 126, no. 12, pp. 1394–1414, 2018.
  16. A. Baudron, Z. W. Wang, O. Cossairt, and A. K. Katsaggelos, “E3d: Event-based 3d shape reconstruction,” arXiv, vol. abs/2012.05214, 2020.
  17. J. Zhang, B. Dong, H. Zhang, J. Ding, F. Heide, B. Yin, and X. Yang, “Spiking transformers for event-based single object tracking,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2022.
  18. X. Wang, J. Li, L. Zhu, Z. Zhang, Z. Chen, X. Li, Y. Wang, Y. Tian, and F. Wu, “VisEvent: Reliable object tracking via collaboration of frame and event flows,” ArXiv, vol. abs/2108.05015, 2021.
  19. B. Ramesh and H. Yang, “Boosted kernelized correlation filters for event-based face detection,” in Proc. of Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 155–159, 2020.
  20. B. Ramesh, A. Ussa, L. Della Vedova, H. Yang, and G. Orchard, “Low-power dynamic object detection and classification with freely moving event cameras,” Frontiers in Neuroscience, vol. 14, p. 135, 2020.
  21. A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate SLAM? combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994–1001, 2018.
  22. J. Li, S. Dong, Z. Yu, Y. Tian, and T. Huang, “Event-based vision enhanced: A joint detection framework in autonomous driving,” in Proc. of IEEE International Conference on Multimedia and Expo (ICME), 2019.
  23. P. Duan, Y. Ma, X. Zhou, X. Shi, Z. W. Wang, T. Huang, and B. Shi, “NeuroZoom: Denoising and super resolving neuromorphic events and spikes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–14, 2023.
  24. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 248–255, 2009.
  25. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc. of European Conference on Computer Vision (ECCV), pp. 740–755, 2014.
  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. of Advances in Neural Information Processing Systems (NeurIPS), pp. 5998–6008, 2017.
  27. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation,” in Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2016.
  28. D. Ko, J. Choi, H. K. Choi, K.-W. On, B. Roh, and H. J. Kim, “MELTR: Meta loss transformer for learning to fine-tune video foundation models,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 20105–20115, 2023.
  29. C. Yu, Q. Zhou, J. Li, J. Yuan, Z. Wang, and F. Wang, “Foundation model drives weakly incremental learning for semantic segmentation,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 23685–23694, 2023.
  30. P. Duan, Z. Wang, B. Shi, O. Cossairt, T. Huang, and A. Katsaggelos, “Guided Event Filtering: Synergy between intensity images and neuromorphic events for high performance imaging,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8261–8275, 2021.
  31. S. Tulyakov, D. Gehrig, S. Georgoulis, J. Erbach, M. Gehrig, Y. Li, and D. Scaramuzza, “Time Lens: Event-based video frame interpolation,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2021.
  32. H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-video: Bringing modern computer vision to event cameras,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2019.
  33. S. M. Mostafavi I., J. Choi, and K.-J. Yoon, “Learning to super resolve intensity images from events,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2020.
  34. L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai, “Bringing a blurry frame alive at high frame-rate with an event camera,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2019.
  35. S. Tulyakov, A. Bochicchio, D. Gehrig, S. Georgoulis, Y. Li, and D. Scaramuzza, “Time lens++: Event-based frame interpolation with parametric non-linear flow and multi-scale fusion,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2022.
  36. J. Han, C. Zhou, P. Duan, Y. Tang, C. Xu, C. Xu, T. Huang, and B. Shi, “Neuromorphic camera guided high dynamic range imaging,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2020.
  37. X. Zhou, P. Duan, Y. Ma, and B. Shi, “EvUnroll: Neuromorphic events based rolling shutter image correction,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2022.
  38. Z. W. Wang, P. Duan, O. Cossairt, A. Katsaggelos, T. Huang, and B. Shi, “Joint filtering of intensity images and neuromorphic events for high-resolution noise-robust imaging,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2020.
  39. T. Kim, J. Lee, L. Wang, and K.-J. Yoon, “Event-guided deblurring of unknown exposure time videos,” Proc. of European Conference on Computer Vision (ECCV), 2022.
  40. Y. Yang, J. Han, J. Liang, I. Sato, and B. Shi, “Learning event guided high dynamic range video reconstruction,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2023.
  41. C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 db dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, 2010.
  42. P. Duan, Z. Wang, X. Zhou, Y. Ma, and B. Shi, “EventZoom: Learning to denoise and super resolve neuromorphic events,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2021.
  43. E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, “The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM,” The International Journal of Robotics Research, vol. 36, no. 2, pp. 142–149, 2017.
  44. T. Stoffregen, C. Scheerlinck, D. Scaramuzza, T. Drummond, N. Barnes, L. Kleeman, and R. Mahony, “Reducing the sim-to-real gap for event cameras,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  45. S. Zhang, Y. Zhang, Z. Jiang, D. Zou, J. Ren, and B. Zhou, “Learning to see in the dark with events,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  46. A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K. Daniilidis, “The multivehicle stereo event camera dataset: An event camera dataset for 3D perception,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2032–2039, 2018.
  47. C. Scheerlinck, H. Rebecq, T. Stoffregen, N. Barnes, R. Mahony, and D. Scaramuzza, “CED: Color event camera dataset,” in Proc. of Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1684–1693, 2019.
  48. B. Wang, J. He, L. Yu, G.-S. Xia, and W. Yang, “Event enhanced high-quality image recovery,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  49. Z. Yu, Y. Zhang, D. Liu, D. Zou, X. Chen, Y. Liu, and J. S. Ren, “Training weakly supervised video frame interpolation with events,” in Proc. of International Conference on Computer Vision (ICCV), 2021.
  50. Z. Jiang, Y. Zhang, D. Zou, J. Ren, J. Lv, and Y. Liu, “Learning event-based motion deblurring,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 3320–3329, 2020.
  51. L. Sun, C. Sakaridis, J. Liang, Q. Jiang, K. Yang, P. Sun, Y. Ye, K. Wang, and L. V. Gool, “Event-based fusion for motion deblurring with cross-modal attention,” in Proc. of European Conference on Computer Vision (ECCV), 2021.
  52. M. Mostafavi, Y. Nam, J. Choi, and K.-J. Yoon, “E2SRI: Learning to super-resolve intensity images from events,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6890–6909, 2022.
  53. J. Han, Y. Yang, C. Zhou, C. Xu, and B. Shi, “EvIntSR-Net: Event guided multiple latent frames reconstruction and super-resolution,” in Proc. of International Conference on Computer Vision (ICCV), 2021.
  54. J. Han, Y. Yang, P. Duan, C. Zhou, L. Ma, C. Xu, T. Huang, I. Sato, and B. Shi, “Hybrid high dynamic range imaging fusing neuromorphic and conventional images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8553–8565, 2023.
  55. S. Barua, Y. Miyatani, and A. Veeraraghavan, “Direct face detection and video reconstruction from event cameras,” in Proc. of Winter Conference on Applications of Computer Vision (WACV), pp. 1–9, 2016.
  56. Z. Zhang, A. J. Yezzi, and G. Gallego, “Formulating event-based image reconstruction as a linear inverse problem with deep regularization using optical flow,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8372–8389, 2023.
  57. C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. Mahony, and D. Scaramuzza, “Fast image reconstruction with an event camera,” in Proc. of Winter Conference on Applications of Computer Vision (WACV), pp. 156–163, 2020.
  58. P. R. G. Cadena, Y. Qian, C. Wang, and M. Yang, “SPADE-E2VID: Spatially-adaptive denormalization for event-based video reconstruction,” IEEE Transactions on Image Processing, vol. 30, pp. 2488–2500, 2021.
  59. C. Brandli, L. Muller, and T. Delbruck, “Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor,” in Proc. of International Symposium on Circuits and Systems (ISCAS), pp. 686–689, 2014.
  60. Z. Wang, Y. Ng, C. Scheerlinck, and R. Mahony, “An asynchronous kalman filter for hybrid event cameras,” in Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 448–457, 2021.
  61. Y. Gao, S. Li, Y. Li, Y. Guo, and Q. Dai, “SuperFast: 200× video frame interpolation via event camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 7764–7780, 2023.
  62. G. Paikin, Y. Ater, R. Shaul, and E. Soloveichik, “EFI-Net: Video frame interpolation from fusion of events and frames,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1291–1301, 2021.
  63. L. Sun, C. Sakaridis, J. Liang, P. Sun, J. Cao, K. Zhang, Q. Jiang, K. Wang, and L. Van Gool, “Event-based frame interpolation with ad-hoc deblurring,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2023.
  64. H. Chen, M. Teng, B. Shi, Y. Wang, and T. Huang, “A residual learning approach to deblur and generate high frame rate video with an event camera,” IEEE Transactions on Multimedia, pp. 1–14, 2022.
  65. S. Lin, J. Zhang, J. Pan, Z. Jiang, D. Zou, Y. Wang, J. Chen, and J. Ren, “Learning event-driven video deblurring and interpolation,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  66. L. Wang, T.-K. Kim, and K.-J. Yoon, “EventSR: From asynchronous events to image reconstruction, restoration, and super-resolution via end-to-end adversarial learning,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2020.
  67. X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy, “ESRGAN: Enhanced super-resolution generative adversarial networks,” in Proc. of European Conference on Computer Vision Workshops (ECCVW), 2018.
  68. T. Köhler, M. Bätz, F. Naderi, A. Kaup, A. Maier, and C. Riess, “Toward bridging the simulated-to-real gap: Benchmarking super-resolution on real data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 11, pp. 2944–2959, 2020.
  69. J. Rim, H. Lee, J. Won, and S. Cho, “Real-world blur dataset for learning and benchmarking deblurring algorithms,” in Proc. of European Conference on Computer Vision (ECCV), 2020.
  70. S. Tulyakov, F. Fleuret, M. Kiefel, P. Gehler, and M. Hirsch, “Learning an event sequence embedding for dense event-based deep stereo,” in Proc. of International Conference on Computer Vision (ICCV), pp. 1527–1537, 2019.
  71. Y. Hu, S.-C. Liu, and T. Delbruck, “V2E: From video frames to realistic dvs events,” in Proc. of Computer Vision and Pattern Recognition Workshops (CVPRW), 2021.
  72. S. Lin, Y. Ma, Z. Guo, and B. Wen, “DVS-Voltmeter: Stochastic process-based event simulator for dynamic vision sensors,” in Proc. of European Conference on Computer Vision (ECCV), 2022.
  73. C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. E. Mahony, and D. Scaramuzza, “Fast image reconstruction with an event camera,” in Proc. of Winter Conference on Applications of Computer Vision (WACV), pp. 156–163, 2020.
  74. W. Weng, Y. Zhang, and Z. Xiong, “Event-based video reconstruction using transformer,” in Proc. of International Conference on Computer Vision (ICCV), pp. 2563–2572, 2021.
  75. L. Zhu, X. Wang, Y. Chang, J. Li, T. Huang, and Y. Tian, “Event-based video reconstruction via potential-assisted spiking neural network,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 3594–3604, 2022.
  76. O. S. Kılıç, A. Akman, and A. A. Alatan, “E-VFIA: Event-based video frame interpolation with attention,” in Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 8284–8290, 2023.
  77. L. Pan, R. Hartley, C. Scheerlinck, M. Liu, X. Yu, and Y. Dai, “High frame rate video reconstruction based on an event camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 5, pp. 2519–2533, 2022.
  78. F. Xu, L. Yu, B. Wang, W. Yang, G.-S. Xia, X. Jia, Z. Qiao, and J. Liu, “Motion deblurring with real events,” in Proc. of International Conference on Computer Vision (ICCV), pp. 2583–2592, 2021.
  79. W. Shang, D. Ren, D. Zou, J. S. Ren, P. Luo, and W. Zuo, “Bringing events into video deblurring with non-consecutively blurry frames,” in Proc. of International Conference on Computer Vision (ICCV), pp. 4531–4540, 2021.
  80. X. Zhang and L. Yu, “Unifying motion deblurring and frame interpolation with events,” in Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 17765–17774, 2022.
  81. L. Sun, C. Sakaridis, J. Liang, Q. Jiang, K. Yang, P. Sun, Y. Ye, K. Wang, and L. Van Gool, “Event-based fusion for motion deblurring with cross-modal attention,” in Proc. of European Conference on Computer Vision (ECCV), 2022.
  82. M. Teng, C. Zhou, H. Lou, and B. Shi, “NEST: Neural event stack for event-based image enhancement,” in Proc. of European Conference on Computer Vision (ECCV), 2022.
  83. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. of Computer Vision and Pattern Recognition (CVPR), 2018.
  84. D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased LSTM: Accelerating recurrent network training for long or event-based sequences,” in Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2016.
  85. W. Weng, Y. Zhang, and Z. Xiong, “Boosting event stream super-resolution with a recurrent neural network,” in Proc. of European Conference on Computer Vision (ECCV), 2022.
  86. Z.-S. Liu, L.-W. Wang, C.-T. Li, and W.-C. Siu, “Image super-resolution via attention based back projection networks,” 2019.
  87. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM SIGGRAPH, 1997.
Citations (1)

Summary

We haven't generated a summary for this paper yet.