Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning in Zero-Sum Markov Games: Relaxing Strong Reachability and Mixing Time Assumptions (2312.08008v3)

Published 13 Dec 2023 in cs.GT and cs.LG

Abstract: We address payoff-based decentralized learning in infinite-horizon zero-sum Markov games. In this setting, each player makes decisions based solely on received rewards, without observing the opponent's strategy or actions nor sharing information. Prior works established finite-time convergence to an approximate Nash equilibrium under strong reachability and mixing time assumptions. We propose a convergent algorithm that significantly relaxes these assumptions, requiring only the existence of a single policy (not necessarily known) with bounded reachability and mixing time. Our key technical novelty is introducing Tsallis entropy regularization to smooth the best-response policy updates. By suitably tuning this regularization, we ensure sufficient exploration, thus bypassing previous stringent assumptions on the MDP. By establishing novel properties of the value and policy updates induced by the Tsallis entropy regularizer, we prove finite-time convergence to an approximate Nash equilibrium.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: