Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semantic-aware Data Augmentation for Text-to-image Synthesis (2312.07951v1)

Published 13 Dec 2023 in cs.CV

Abstract: Data augmentation has been recently leveraged as an effective regularizer in various vision-language deep neural networks. However, in text-to-image synthesis (T2Isyn), current augmentation wisdom still suffers from the semantic mismatch between augmented paired data. Even worse, semantic collapse may occur when generated images are less semantically constrained. In this paper, we develop a novel Semantic-aware Data Augmentation (SADA) framework dedicated to T2Isyn. In particular, we propose to augment texts in the semantic space via an Implicit Textual Semantic Preserving Augmentation ($ITA$), in conjunction with a specifically designed Image Semantic Regularization Loss ($L_r$) as Generated Image Semantic Conservation, to cope well with semantic mismatch and collapse. As one major contribution, we theoretically show that $ITA$ can certify better text-image consistency while $L_r$ regularizing the semantics of generated images would avoid semantic collapse and enhance image quality. Extensive experiments validate that SADA enhances text-image consistency and improves image quality significantly in T2Isyn models across various backbones. Especially, incorporating SADA during the tuning process of Stable Diffusion models also yields performance improvements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube