Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Diffusions under Uncertainty (2312.07942v1)

Published 13 Dec 2023 in cs.SI

Abstract: To infer a diffusion network based on observations from historical diffusion processes, existing approaches assume that observation data contain exact occurrence time of each node infection, or at least the eventual infection statuses of nodes in each diffusion process. They determine potential influence relationships between nodes by identifying frequent sequences, or statistical correlations, among node infections. In some real-world settings, such as the spread of epidemics, tracing exact infection times is often infeasible due to a high cost; even obtaining precise infection statuses of nodes is a challenging task, since observable symptoms such as headache only partially reveal a node's true status. In this work, we investigate how to effectively infer a diffusion network from observation data with uncertainty. Provided with only probabilistic information about node infection statuses, we formulate the problem of diffusion network inference as a constrained nonlinear regression w.r.t. the probabilistic data. An alternating maximization method is designed to solve this regression problem iteratively, and the improvement of solution quality in each iteration can be theoretically guaranteed. Empirical studies are conducted on both synthetic and real-world networks, and the results verify the effectiveness and efficiency of our approach.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.