Papers
Topics
Authors
Recent
2000 character limit reached

COVID-19 Detection Using Slices Processing Techniques and a Modified Xception Classifier from Computed Tomography Images (2312.07580v1)

Published 10 Dec 2023 in eess.IV, cs.CV, and cs.LG

Abstract: This paper extends our previous method for COVID-19 diagnosis, proposing an enhanced solution for detecting COVID-19 from computed tomography (CT) images. To decrease model misclassifications, two key steps of image processing were employed. Firstly, the uppermost and lowermost slices were removed, preserving sixty percent of each patient's slices. Secondly, all slices underwent manual cropping to emphasize the lung areas. Subsequently, resized CT scans (224 by 224) were input into an Xception transfer learning model. Leveraging Xception's architecture and pre-trained weights, the modified model achieved binary classification. Promising results on the COV19-CT database showcased higher validation accuracy and macro F1 score at both the slice and patient levels compared to our previous solution and alternatives on the same dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.