Designing Heterogeneous Robot Fleets for Task Allocation and Sequencing (2312.07234v1)
Abstract: We study the problem of selecting a fleet of robots to service spatially distributed tasks with diverse requirements within time-windows. The problem of allocating tasks to a fleet of potentially heterogeneous robots and finding an optimal sequence for each robot is known as multi-robot task assignment (MRTA). Most state-of-the-art methods focus on the problem when the fleet of robots is fixed. In contrast, we consider that we are given a set of available robot types and requested tasks, and need to assemble a fleet that optimally services the tasks while the cost of the fleet remains under a budget limit. We characterize the complexity of the problem and provide a Mixed-Integer Linear Program (MILP) formulation. Due to poor scalability of the MILP, we propose a heuristic solution based on a Large Neighbourhood Search (LNS). In simulations, we demonstrate that the proposed method requires substantially lower budgets than a greedy algorithm to service all tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.