Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uncertainty Quantification for the Homogeneous Landau-Fokker-Planck Equation via Deterministic Particle Galerkin methods (2312.07218v1)

Published 12 Dec 2023 in math.NA, cs.NA, math.AP, physics.comp-ph, and physics.plasm-ph

Abstract: We design a deterministic particle method for the solution of the spatially homogeneous Landau equation with uncertainty. The deterministic particle approximation is based on the reformulation of the Landau equation as a formal gradient flow on the set of probability measures, whereas the propagation of uncertain quantities is computed by means of a sg representation of each particle. This approach guarantees spectral accuracy in uncertainty space while preserving the fundamental structural properties of the model: the positivity of the solution, the conservation of invariant quantities, and the entropy production. We provide a regularity results for the particle method in the random space. We perform the numerical validation of the particle method in a wealth of test cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, 2005.
  2. Plasma Physics via Computer Simulation. McGraw-Hill, 1985.
  3. A. V. Bobylev and K. Nanbu. Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E, 61(4):4576, 2000.
  4. A hybrid method for accelerated simulation of Coulomb collisions in a plasma. Multiscale Model. Simul., 7(2):865–887, 2008.
  5. A blob method for diffusion. Calc. Var. Partial Differ. Equ., 58:1–53, 2019.
  6. Boltzmann to Landau from the gradient flow perspective. Nonlinear Anal., 219:112824, 2022.
  7. Convergence of a particle method for a regularized spatially homogeneous Landau equation. Math. Models Methods Appl. Sci., 33(05):971–1008, 2023.
  8. A particle method for the homogeneous Landau equation. J. Comput. Phys. X, 7:100066, 24, 2020.
  9. Random batch particle methods for the homogeneous Landau equation. Commun. Comput. Phys., 31(4):997–1019, 2022.
  10. Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal., 258(4):1273–1309, 2010.
  11. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam., 19(3):971–1018, 2003.
  12. Particle based gPC methods for mean-field models of swarming with uncertainty. Commun. Comput. Phys., 25(2):508–531, 2019.
  13. J. A. Carrillo and M. Zanella. Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties. Vietnam J. Math., 47(4):931–954, 2019.
  14. N. Crouseilles and F. Filbet. Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys., 201(2):546–572, 2004.
  15. Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys., 229(6):1927–1953, 2010.
  16. Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas. Commun. Appl. Ind. Math., 1(1):72–91, 2010.
  17. Numerical methods for plasma physics in collisional regimes. J. Plasma Phys., 81(1):1–31, 2015.
  18. Micro-macro stochastic Galerkin methods for nonlinear Fokker-Plank equations with random inputs. Multiscale Model. Simul., In press.
  19. M. Erbar. A gradient flow approach to the Boltzmann equation. J. Eur. Math. Soc., 2023.
  20. Conservative Numerical Schemes for the Vlasov Equation. J. Comput. Phys., 172(1):166–187, 2001.
  21. A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput., 39(4):B658–B674, 2017.
  22. Time-dependent generalized polynomial chaos. J. Comput. Phys., 229(22):8333–8363, 2010.
  23. M. Gualdani and N. Zamponi. Spectral gap and exponential convergence to equilibrium for a multi-species Landau system. Bulletin des Sciences Mathématiques, 141:509–538, 2017.
  24. S. Jin and L. Pareschi, editors. Uncertainty Quantification for Hyperbolic and Kinetic Equations, volume 14 of SEMA-SIMAI Springer Series. Springer, 2017.
  25. L. Liu and S. Jin. Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic galerkin approximation to collisional kinetic equations with multiple scales and random inputs. Multiscale Model. Simul., 16(3):1085–1114, 2018.
  26. Particle simulation methods for the landau-fokker-planck equation with uncertain data. Preprint arXiv:2306.07701, 2023.
  27. Stochastic Galerkin particle methods for kinetic equations of plasmas with uncertainties. J. Comput. Phys., 479:112011, 2023.
  28. Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties. Partial Differ. Equ. Appl., 3:51, 2022.
  29. L. Pareschi. An introduction to uncertainty quantification for kinetic equations and related problems. In Trails in Kinetic Theory: Foundational Aspects and Numerical Methods, volume 25 of SEMA SIMAI Springer Ser., pages 141–181. Springer, Cham, 2021.
  30. Fast spectral methods for the Fokker-Planck-Landau collision operator. J. Comput. Phys., 165(1):216–236, 2000.
  31. L. Pareschi and M. Zanella. Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: Space-homogeneous case. J. Comput. Phys., 423:1098–1120, 2020.
  32. Charge-conserving FEM–PIC schemes on general grids. C. R. Mec., 342(10-11):570–582, 2014.
  33. An entropy based thermalization scheme for hybrid simulations of Coulomb collisions. J. Comput. Phys., 273:77–99, 2014.
  34. The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys., 149(2):201–220, 1999.
  35. B. Trubnikov. Particle interaction in a fully ionized plasma. Rev. Plasma Phys., 1:105–204, 1965.
  36. T. Xiao and M. Frank. A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification. J. Comput. Phys., 432:110139, 2021.
  37. D. Xiu. Numerical Methods for Stochastic Computations. Princeton University Press, 2010.
  38. D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.