Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Hierarchical Video Compression (2312.07126v1)

Published 12 Dec 2023 in eess.IV

Abstract: Recently, probabilistic predictive coding that directly models the conditional distribution of latent features across successive frames for temporal redundancy removal has yielded promising results. Existing methods using a single-scale Variational AutoEncoder (VAE) must devise complex networks for conditional probability estimation in latent space, neglecting multiscale characteristics of video frames. Instead, this work proposes hierarchical probabilistic predictive coding, for which hierarchal VAEs are carefully designed to characterize multiscale latent features as a family of flexible priors and posteriors to predict the probabilities of future frames. Under such a hierarchical structure, lightweight networks are sufficient for prediction. The proposed method outperforms representative learned video compression models on common testing videos and demonstrates computational friendliness with much less memory footprint and faster encoding/decoding. Extensive experiments on adaptation to temporal patterns also indicate the better generalization of our hierarchical predictive mechanism. Furthermore, our solution is the first to enable progressive decoding that is favored in networked video applications with packet loss.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.