Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Debiasing Sequential Recommenders through Distributionally Robust Optimization over System Exposure (2312.07036v1)

Published 12 Dec 2023 in cs.IR

Abstract: Sequential recommendation (SR) models are typically trained on user-item interactions which are affected by the system exposure bias, leading to the user preference learned from the biased SR model not being fully consistent with the true user preference. Exposure bias refers to the fact that user interactions are dependent upon the partial items exposed to the user. Existing debiasing methods do not make full use of the system exposure data and suffer from sub-optimal recommendation performance and high variance. In this paper, we propose to debias sequential recommenders through Distributionally Robust Optimization (DRO) over system exposure data. The key idea is to utilize DRO to optimize the worst-case error over an uncertainty set to safeguard the model against distributional discrepancy caused by the exposure bias. The main challenge to apply DRO for exposure debiasing in SR lies in how to construct the uncertainty set and avoid the overestimation of user preference on biased samples. Moreover, how to evaluate the debiasing effect on biased test set is also an open question. To this end, we first introduce an exposure simulator trained upon the system exposure data to calculate the exposure distribution, which is then regarded as the nominal distribution to construct the uncertainty set of DRO. Then, we introduce a penalty to items with high exposure probability to avoid the overestimation of user preference for biased samples. Finally, we design a debiased self-normalized inverse propensity score (SNIPS) evaluator for evaluating the debiasing effect on the biased offline test set. We conduct extensive experiments on two real-world datasets to verify the effectiveness of the proposed methods. Experimental results demonstrate the superior exposure debiasing performance of proposed methods. Codes and data are available at \url{https://github.com/nancheng58/DebiasedSR_DRO}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.