Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Securing MIMO Wiretap Channel with Learning-Based Friendly Jamming under Imperfect CSI (2312.07011v2)

Published 12 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: Wireless communications are particularly vulnerable to eavesdropping attacks due to their broadcast nature. To effectively deal with eavesdroppers, existing security techniques usually require accurate channel state information (CSI), e.g., for friendly jamming (FJ), and/or additional computing resources at transceivers, e.g., cryptography-based solutions, which unfortunately may not be feasible in practice. This challenge is even more acute in low-end IoT devices. We thus introduce a novel deep learning-based FJ framework that can effectively defeat eavesdropping attacks with imperfect CSI and even without CSI of legitimate channels. In particular, we first develop an autoencoder-based communication architecture with FJ, namely AEFJ, to jointly maximize the secrecy rate and minimize the block error rate at the receiver without requiring perfect CSI of the legitimate channels. In addition, to deal with the case without CSI, we leverage the mutual information neural estimation (MINE) concept and design a MINE-based FJ scheme that can achieve comparable security performance to the conventional FJ methods that require perfect CSI. Extensive simulations in a multiple-input multiple-output (MIMO) system demonstrate that our proposed solution can effectively deal with eavesdropping attacks in various settings. Moreover, the proposed framework can seamlessly integrate MIMO security and detection tasks into a unified end-to-end learning process. This integrated approach can significantly maximize the throughput and minimize the block error rate, offering a good solution for enhancing communication security in wireless communication systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of physical layer security in multiuser wireless networks: A survey,” IEEE Commun. Surv. Tutor, vol. 16, no. 3, pp. 1550–1573, 2014.
  2. Y. Zhang, Y. Shen, H. Wang, J. Yong, and X. Jiang, “On secure wireless communications for iot under eavesdropper collusion,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 3, pp. 1281–1293, 2015.
  3. N. H. Chu, N. Van Huynh, D. N. Nguyen, D. T. Hoang, S. Gong, T. Shu, E. Dutkiewicz, and K. T. Phan, “Countering eavesdroppers with meta-learning-based cooperative ambient backscatter communications,” arXiv preprint arXiv:2308.02242, 2023.
  4. D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549, no. 7671, pp. 188–194, 2017.
  5. M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  6. C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.
  7. A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  8. J. M. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey,” IEEE Commun. Surv. Tutor, vol. 21, no. 2, pp. 1773–1828, 2018.
  9. S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun, vol. 7, no. 6, pp. 2180–2189, 2008.
  10. B. Akgun, O. O. Koyluoglu, and M. Krunz, “Exploiting full-duplex receivers for achieving secret communications in multiuser MISO networks,” IEEE Trans. Commun., vol. 65, no. 2, pp. 956–968, 2016.
  11. P. Siyari, M. Krunz, and D. N. Nguyen, “Friendly jamming in a mimo wiretap interference network: A nonconvex game approach,” J. Sel. Areas Commun., vol. 35, no. 3, pp. 601–614, 2017.
  12. J. Choi, “A robust beamforming approach to guarantee instantaneous secrecy rate,” IEEE Trans. Wireless Commun, vol. 15, no. 2, pp. 1076–1085, 2015.
  13. D. N. Nguyen and M. Krunz, “Spectrum management and power allocation in mimo cognitive networks,” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2023–2031.
  14. ——, “Price-based joint beamforming and spectrum management in multi-antenna cognitive radio networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 11, pp. 2295–2305, 2012.
  15. T. X. Vu, S. Chatzinotas, V.-D. Nguyen, D. T. Hoang, D. N. Nguyen, M. D. Renzo, and B. Ottersten, “Machine learning-enabled joint antenna selection and precoding design: From offline complexity to online performance,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3710–3722, 2021.
  16. A. Mukherjee, “Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints,” Proceedings of the IEEE, vol. 103, no. 10, pp. 1747–1761, 2015.
  17. A. Mukherjee and A. L. Swindlehurst, “Robust beamforming for security in mimo wiretap channels with imperfect csi,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351–361, 2010.
  18. M. Pei, J. Wei, K.-K. Wong, and X. Wang, “Masked beamforming for multiuser mimo wiretap channels with imperfect csi,” IEEE Trans. Wireless Commun, vol. 11, no. 2, pp. 544–549, 2012.
  19. J. B. Perazzone, P. L. Yu, B. M. Sadler, and R. S. Blum, “Artificial noise-aided mimo physical layer authentication with imperfect csi,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2173–2185, 2021.
  20. T. Erpek, T. J. O’Shea, and T. C. Clancy, “Learning a physical layer scheme for the mimo interference channel,” in 2018 IEEE International Conference on Communications (ICC).   IEEE, 2018, pp. 1–5.
  21. T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based MIMO communications,” arXiv preprint arXiv:1707.07980, 2017.
  22. R. Fritschek, R. F. Schaefer, and G. Wunder, “Deep learning for the gaussian wiretap channel,” in ICC 2019-2019 IEEE International Conference on Communications (ICC).   IEEE, 2019, pp. 1–6.
  23. M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and D. Hjelm, “Mutual information neural estimation,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   PMLR, 10–15 Jul 2018, pp. 531–540. [Online]. Available: https://proceedings.mlr.press/v80/belghazi18a.html
  24. N. A. Letizia and A. M. Tonello, “Capacity-driven autoencoders for communications,” IEEE Open Journal of the Communications Society, vol. 2, pp. 1366–1378, 2021.
  25. T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays using deep learning,” IEEE Wireless Communications Letters, vol. 9, no. 1, pp. 103–107, 2019.
  26. R. Fritschek, R. F. Schaefer, and G. Wunder, “Deep learning for channel coding via neural mutual information estimation,” arXiv preprint arXiv:1903.02865, 2019.
  27. C. Wang, E. K. S. Au, R. D. Murch, W. H. Mow, R. S. Cheng, and V. Lau, “On the performance of the mimo zero-forcing receiver in the presence of channel estimation error,” IEEE Trans. Wireless Commun, vol. 6, no. 3, pp. 805–810, 2007.
  28. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, 2017.
  29. E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–595, 1999.
  30. D. B. F. Agakov, “The im algorithm: a variational approach to information maximization,” 2004.
  31. D. McAllester and K. Stratos, “Formal limitations on the measurement of mutual information,” in Procee. of the Twenty Third International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.   PMLR, 26–28 Aug 2020, pp. 875–884.
  32. F. Mirkarimi, S. Rini, and N. Farsad, “Benchmarking neural capacity estimation: Viability and reliability,” IEEE Trans Commun, vol. 71, no. 5, pp. 2654–2669, 2023.
  33. A. Mohammad, C. Masouros, and Y. Andreopoulos, “Complexity-scalable neural-network-based mimo detection with learnable weight scaling,” IEEE Trans Commun, vol. 68, no. 10, pp. 6101–6113, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com