Papers
Topics
Authors
Recent
Search
2000 character limit reached

Humans vs Large Language Models: Judgmental Forecasting in an Era of Advanced AI

Published 12 Dec 2023 in cs.LG and cs.CY | (2312.06941v2)

Abstract: This study investigates the forecasting accuracy of human experts versus LLMs in the retail sector, particularly during standard and promotional sales periods. Utilizing a controlled experimental setup with 123 human forecasters and five LLMs, including ChatGPT4, ChatGPT3.5, Bard, Bing, and Llama2, we evaluated forecasting precision through Mean Absolute Percentage Error. Our analysis centered on the effect of the following factors on forecasters performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact. The findings indicate that LLMs do not consistently outperform humans in forecasting accuracy and that advanced statistical forecasting models do not uniformly enhance the performance of either human forecasters or LLMs. Both human and LLM forecasters exhibited increased forecasting errors, particularly during promotional periods and under the influence of positive external impacts. Our findings call for careful consideration when integrating LLMs into practical forecasting processes.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.