Emergent Mind

Abstract

In this paper, we explore the graph partitioning problem, a pivotal combina-torial optimization challenge with extensive applications in various fields such as science, technology, and business. Recognized as an NP-hard prob-lem, graph partitioning lacks polynomial-time algorithms for its resolution. Recently, there has been a burgeoning interest in leveraging machine learn-ing, particularly approaches like supervised, unsupervised, and reinforce-ment learning, to tackle such NP-hard problems. However, these methods face significant hurdles: supervised learning is constrained by the necessity of labeled solution instances, which are often computationally impractical to obtain; reinforcement learning grapples with instability in the learning pro-cess; and unsupervised learning contends with the absence of a differentia-ble loss function, a consequence of the discrete nature of most combinatorial optimization problems. Addressing these challenges, our research introduces a novel pipeline employing an unsupervised graph neural network to solve the graph partitioning problem. The core innovation of this study is the for-mulation of a differentiable loss function tailored for this purpose. We rigor-ously evaluate our methodology against contemporary state-of-the-art tech-niques, focusing on metrics: cuts and balance, and our findings reveal that our is competitive with these leading methods.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.