Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Novel Differentiable Loss Function for Unsupervised Graph Neural Networks in Graph Partitioning (2312.06877v1)

Published 11 Dec 2023 in cs.LG

Abstract: In this paper, we explore the graph partitioning problem, a pivotal combina-torial optimization challenge with extensive applications in various fields such as science, technology, and business. Recognized as an NP-hard prob-lem, graph partitioning lacks polynomial-time algorithms for its resolution. Recently, there has been a burgeoning interest in leveraging machine learn-ing, particularly approaches like supervised, unsupervised, and reinforce-ment learning, to tackle such NP-hard problems. However, these methods face significant hurdles: supervised learning is constrained by the necessity of labeled solution instances, which are often computationally impractical to obtain; reinforcement learning grapples with instability in the learning pro-cess; and unsupervised learning contends with the absence of a differentia-ble loss function, a consequence of the discrete nature of most combinatorial optimization problems. Addressing these challenges, our research introduces a novel pipeline employing an unsupervised graph neural network to solve the graph partitioning problem. The core innovation of this study is the for-mulation of a differentiable loss function tailored for this purpose. We rigor-ously evaluate our methodology against contemporary state-of-the-art tech-niques, focusing on metrics: cuts and balance, and our findings reveal that our is competitive with these leading methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.