Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Decentralized Cooperative Platoon using Multi-Agent Deep Reinforcement Learning (2312.06858v1)

Published 11 Dec 2023 in cs.RO, cs.AI, cs.MA, cs.SY, and eess.SY

Abstract: Cooperative autonomous driving plays a pivotal role in improving road capacity and safety within intelligent transportation systems, particularly through the deployment of autonomous vehicles on urban streets. By enabling vehicle-to-vehicle communication, these systems expand the vehicles environmental awareness, allowing them to detect hidden obstacles and thereby enhancing safety and reducing crash rates compared to human drivers who rely solely on visual perception. A key application of this technology is vehicle platooning, where connected vehicles drive in a coordinated formation. This paper introduces a vehicle platooning approach designed to enhance traffic flow and safety. Developed using deep reinforcement learning in the Unity 3D game engine, known for its advanced physics, this approach aims for a high-fidelity physical simulation that closely mirrors real-world conditions. The proposed platooning model focuses on scalability, decentralization, and fostering positive cooperation through the introduced predecessor-follower "sharing and caring" communication framework. The study demonstrates how these elements collectively enhance autonomous driving performance and robustness, both for individual vehicles and for the platoon as a whole, in an urban setting. This results in improved road safety and reduced traffic congestion.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.