Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Symptom-based Machine Learning Models for the Early Detection of COVID-19: A Narrative Review (2312.06832v1)

Published 8 Dec 2023 in cs.LG and cs.AI

Abstract: Despite the widespread testing protocols for COVID-19, there are still significant challenges in early detection of the disease, which is crucial for preventing its spread and optimizing patient outcomes. Owing to the limited testing capacity in resource-strapped settings and the limitations of the available traditional methods of testing, it has been established that a fast and efficient strategy is important to fully stop the virus. Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging. Symptom-based detection methods have been developed to predict COVID-19, and they have shown promising results. In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations. The review will also examine the performance of symptom-based models when compared to image-based models. Because different studies used varying datasets, methodologies, and performance metrics. Selecting the model that performs best relies on the context and objectives of the research. However, based on the results, we observed that ensemble classifier performed exceptionally well in predicting the occurrence of COVID-19 based on patient symptoms with the highest overall accuracy of 97.88%. Gradient Boosting Algorithm achieved an AUC (Area Under the Curve) of 0.90 and identified key features contributing to the decision-making process. Image-based models, as observed in the analyzed studies, have consistently demonstrated higher accuracy than symptom-based models, often reaching impressive levels ranging from 96.09% to as high as 99%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube