Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Resetting a fixed broken ELBO (2312.06828v1)

Published 11 Dec 2023 in stat.ML and cs.LG

Abstract: Variational autoencoders (VAEs) are one class of generative probabilistic latent-variable models designed for inference based on known data. They balance reconstruction and regularizer terms. A variational approximation produces an evidence lower bound (ELBO). Multiplying the regularizer term by beta provides a beta-VAE/ELBO, improving disentanglement of the latent space. However, any beta value different than unity violates the laws of conditional probability. To provide a similarly-parameterized VAE, we develop a Renyi (versus Shannon) entropy VAE, and a variational approximation RELBO that introduces a similar parameter. The Renyi VAE has an additional Renyi regularizer-like term with a conditional distribution that is not learned. The term is evaluated essentially analytically using a Singular Value Decomposition method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube