Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing (2312.06406v2)

Published 11 Dec 2023 in cs.RO and cs.AI

Abstract: In this paper, we address the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars when navigating under conditions where practical vehicle modelling errors (commonly known as \emph{model mismatches}) are present. To address this challenge, we propose a partial end-to-end algorithm that decouples the planning and control tasks. Within this framework, an RL agent generates a trajectory comprising a path and velocity, which is subsequently tracked using a pure pursuit steering controller and a proportional velocity controller, respectively. In contrast, many current learning-based (i.e., reinforcement and imitation learning) algorithms utilise an end-to-end approach whereby a deep neural network directly maps from sensor data to control commands. By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.