Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Oracle Character Recognition using Unsupervised Discriminative Consistency Network (2312.06075v1)

Published 11 Dec 2023 in cs.CV

Abstract: Ancient history relies on the study of ancient characters. However, real-world scanned oracle characters are difficult to collect and annotate, posing a major obstacle for oracle character recognition (OrCR). Besides, serious abrasion and inter-class similarity also make OrCR more challenging. In this paper, we propose a novel unsupervised domain adaptation method for OrCR, which enables to transfer knowledge from labeled handprinted oracle characters to unlabeled scanned data. We leverage pseudo-labeling to incorporate the semantic information into adaptation and constrain augmentation consistency to make the predictions of scanned samples consistent under different perturbations, leading to the model robustness to abrasion, stain and distortion. Simultaneously, an unsupervised transition loss is proposed to learn more discriminative features on the scanned domain by optimizing both between-class and within-class transition probability. Extensive experiments show that our approach achieves state-of-the-art result on Oracle-241 dataset and substantially outperforms the recently proposed structure-texture separation network by 15.1%.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.