Speeding up astrochemical reaction networks with autoencoders and neural ODEs (2312.06015v1)
Abstract: In astrophysics, solving complex chemical reaction networks is essential but computationally demanding due to the high dimensionality and stiffness of the ODE systems. Traditional approaches for reducing computational load are often specialized to specific chemical networks and require expert knowledge. This paper introduces a machine learning-based solution employing autoencoders for dimensionality reduction and a latent space neural ODE solver to accelerate astrochemical reaction network computations. Additionally, we propose a cost-effective latent space linear function solver as an alternative to neural ODEs. These methods are assessed on a dataset comprising 29 chemical species and 224 reactions. Our findings demonstrate that the neural ODE achieves a 55x speedup over the baseline model while maintaining significantly higher accuracy by up to two orders of magnitude reduction in relative error. Furthermore, the linear latent model enhances accuracy and achieves a speedup of up to 4000x compared to standard methods.
- Neural networks: solving the chemistry of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 518(4):5718–5733, December 2022. ISSN 0035-8711, 1365-2966. doi: 10.1093/mnras/stac3512. URL http://arxiv.org/abs/2211.15688. arXiv:2211.15688 [astro-ph].
- Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, April 2016. doi: 10.1073/pnas.1517384113. URL https://www.pnas.org/doi/10.1073/pnas.1517384113. Publisher: Proceedings of the National Academy of Sciences.
- Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.
- Neural Ordinary Differential Equations, December 2019. URL http://arxiv.org/abs/1806.07366. arXiv:1806.07366 [cs, stat].
- A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1):19–26, March 1980. ISSN 03770427. doi: 10.1016/0771-050X(80)90013-3. URL https://linkinghub.elsevier.com/retrieve/pii/0771050X80900133.
- Star formation at very low metallicity. I: Chemistry and cooling at low densities. The Astrophysical Journal, 666(1):1–19, September 2007. ISSN 0004-637X, 1538-4357. doi: 10.1086/519445. URL http://arxiv.org/abs/0705.0182. arXiv:0705.0182 [astro-ph].
- Modelling CO formation in the turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 404(1):2–29, May 2010. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2009.15718.x. URL https://doi.org/10.1111/j.1365-2966.2009.15718.x.
- Chemical complexity in astrophysical simulations: optimization and reduction techniques. Monthly Notices of the Royal Astronomical Society, 431(2):1659–1668, May 2013. ISSN 0035-8711. doi: 10.1093/mnras/stt284. URL https://doi.org/10.1093/mnras/stt284.
- KROME - a package to embed chemistry in astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 439(3):2386–2419, March 2014. ISSN 0035-8711, 1365-2966. doi: 10.1093/mnras/stu114. URL http://arxiv.org/abs/1311.1070. arXiv:1311.1070 [astro-ph].
- Reducing the complexity of chemical networks via interpretable autoencoders. Astronomy & Astrophysics, 668:A139, December 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202039956. URL http://arxiv.org/abs/2104.09516. arXiv:2104.09516 [astro-ph, physics:physics].
- D. Hollenbach and C. F. McKee. Molecule formation and infrared emission in fast interstellar shocks. I. Physical processes. The Astrophysical Journal Supplement Series, 41:555–592, November 1979. ISSN 0067-0049. doi: 10.1086/190631. URL https://ui.adsabs.harvard.edu/abs/1979ApJS...41..555H. ADS Bibcode: 1979ApJS…41..555H.
- Patrick Kidger. On Neural Differential Equations, February 2022. URL http://arxiv.org/abs/2202.02435. arXiv:2202.02435 [cs, math, stat].
- Adam: A Method for Stochastic Optimization, January 2017. URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].
- The UMIST database for astrochemistry 1999. Astronomy and Astrophysics Supplement Series, 146(1):157–168, October 2000. ISSN 0365-0138, 1286-4846. doi: 10.1051/aas:2000265. URL http://aas.aanda.org/10.1051/aas:2000265.
- Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations, March 2020. URL http://arxiv.org/abs/1710.10121. arXiv:1710.10121 [cs, stat].
- On the Stability and Evolution of Isolated Bok Globules. The Astrophysical Journal, 524(2):923, October 1999. ISSN 0004-637X. doi: 10.1086/307823. URL https://iopscience.iop.org/article/10.1086/307823/meta. Publisher: IOP Publishing.
- Continuous-time echo state networks for predicting power system dynamics. Electric Power Systems Research, 212:108562, November 2022. ISSN 0378-7796. doi: 10.1016/j.epsr.2022.108562. URL https://www.sciencedirect.com/science/article/pii/S0378779622006587.
- Operator Learning with Neural Fields: Tackling PDEs on General Geometries, June 2023. URL http://arxiv.org/abs/2306.07266. arXiv:2306.07266 [cs].
- Reduced Order Model for Chemical Kinetics: A case study with Primordial Chemical Network, July 2022. URL http://arxiv.org/abs/2207.07159. arXiv:2207.07159 [astro-ph, physics:physics].
- Immanuel Sulzer (2 papers)
- Tobias Buck (69 papers)