Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference (2312.05910v5)

Published 10 Dec 2023 in cs.LG, eess.SP, and stat.ML

Abstract: The Gaussian process state-space models (GPSSMs) represent a versatile class of data-driven nonlinear dynamical system models. However, the presence of numerous latent variables in GPSSM incurs unresolved issues for existing variational inference approaches, particularly under the more realistic non-mean-field (NMF) assumption, including extensive training effort, compromised inference accuracy, and infeasibility for online applications, among others. In this paper, we tackle these challenges by incorporating the ensemble Kalman filter (EnKF), a well-established model-based filtering technique, into the NMF variational inference framework to approximate the posterior distribution of the latent states. This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO). Moreover, owing to the streamlined parameterization via the EnKF, the new GPSSM model can be easily accommodated in online learning applications. We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting. We also provide detailed analysis and fresh insights for the proposed algorithms. Comprehensive evaluation across diverse real and synthetic datasets corroborates the superior learning and inference performance of our EnKF-aided variational inference algorithms compared to existing methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Z.Ā Yan, P.Ā Cheng, Z.Ā Chen, Y.Ā Li, and B.Ā Vucetic, ā€œGaussian process reinforcement learning for fast opportunistic spectrum access,ā€ IEEE Trans. Signal Process., vol.Ā 68, pp. 2613–2628, Apr. 2020.
  2. K.Ā Arulkumaran, M.Ā P. Deisenroth, M.Ā Brundage, and A.Ā A. Bharath, ā€œDeep reinforcement learning: A brief survey,ā€ IEEE Signal Process. Mag., vol.Ā 34, no.Ā 6, pp. 26–38, Nov. 2017.
  3. A.Ā M. Alaa and M.Ā vanĀ der Schaar, ā€œAttentive state-space modeling of disease progression,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec. 2019, pp. 11 338–11 348.
  4. G.Ā Revach, N.Ā Shlezinger, X.Ā Ni, A.Ā L. Escoriza, R.Ā J. VanĀ Sloun, and Y.Ā C. Eldar, ā€œKalmanNet: Neural network aided Kalman filtering for partially known dynamics,ā€ IEEE Trans. Signal Process., vol.Ā 70, pp. 1532–1547, Mar. 2022.
  5. R.Ā Frigola, ā€œBayesian time series learning with Gaussian processes,ā€ Ph.D. dissertation, University of Cambridge, 2015.
  6. J.Ā M. Wang, D.Ā J. Fleet, and A.Ā Hertzmann, ā€œGaussian process dynamical models for human motion,ā€ IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 30, no.Ā 2, pp. 283–298, Dec. 2007.
  7. R.Ā Turner, M.Ā Deisenroth, and C.Ā Rasmussen, ā€œState-space inference and learning with Gaussian processes,ā€ in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Sardinia, Italy, May 2010, pp. 868–875.
  8. M.Ā P. Deisenroth, D.Ā Fox, and C.Ā E. Rasmussen, ā€œGaussian processes for data-efficient learning in robotics and control,ā€ IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 37, no.Ā 2, pp. 408–423, Nov. 2013.
  9. M.Ā P. Deisenroth, R.Ā D. Turner, M.Ā F. Huber, U.Ā D. Hanebeck, and C.Ā E. Rasmussen, ā€œRobust filtering and smoothing with Gaussian processes,ā€ IEEE Trans. Autom. Control, vol.Ā 57, no.Ā 7, pp. 1865–1871, Dec. 2011.
  10. J.Ā Ko and D.Ā Fox, ā€œGP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models,ā€ Auton. Robots, vol.Ā 27, no.Ā 1, pp. 75–90, Jul. 2009.
  11. ——, ā€œLearning GP-BayesFilters via Gaussian process latent variable models,ā€ Auton. Robots, vol.Ā 30, no.Ā 1, pp. 3–23, Oct. 2011.
  12. Y.Ā Zhao, C.Ā Fritsche, G.Ā Hendeby, F.Ā Yin, T.Ā Chen, and F.Ā Gunnarsson, ā€œCramĆ©r–Rao bounds for filtering based on Gaussian process state-space models,ā€ IEEE Trans. Signal Process., vol.Ā 67, no.Ā 23, pp. 5936–5951, Oct. 2019.
  13. A.Ā Xie, F.Ā Yin, B.Ā Ai, S.Ā Zhang, and S.Ā Cui, ā€œLearning while tracking: A practical system based on variational Gaussian process state-space model and smartphone sensory data,ā€ in Proc. Int. Conf. Inf. Fusion (FUSION), Rustenburg, South Africa, Jul. 2020, pp. 1–7.
  14. R.Ā Frigola, F.Ā Lindsten, T.Ā B. Schƶn, and C.Ā E. Rasmussen, ā€œBayesian inference and learning in Gaussian process state-space models with particle MCMC,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Lake Tahoe, NV, United states, Dec. 2013, pp. 3156–3164.
  15. A.Ā Svensson, A.Ā Solin, S.Ā SƤrkkƤ, and T.Ā Schƶn, ā€œComputationally efficient Bayesian learning of Gaussian process state space models,ā€ in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Cadiz, Spain, May 2016, pp. 213–221.
  16. A.Ā Svensson and T.Ā B. Schƶn, ā€œA flexible state–space model for learning nonlinear dynamical systems,ā€ Automatica, vol.Ā 80, pp. 189–199, Jun. 2017.
  17. K.Ā Berntorp, ā€œOnline Bayesian inference and learning of Gaussian-process state–space models,ā€ Automatica, vol. 129, p. 109613, Jul. 2021.
  18. A.Ā Solin and S.Ā SƤrkkƤ, ā€œHilbert space methods for reduced-rank Gaussian process regression,ā€ Stat. Comput., vol.Ā 30, no.Ā 2, pp. 419–446, Mar. 2020.
  19. R.Ā Frigola, Y.Ā Chen, and C.Ā E. Rasmussen, ā€œVariational Gaussian process state-space models,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Montreal, QC, Canada, Dec. 2014, pp. 3680–3688.
  20. A.Ā J. McHutchon, ā€œNonlinear modelling and control using Gaussian processes,ā€ Ph.D. dissertation, University of Cambridge, 2014.
  21. S.Ā Eleftheriadis, T.Ā Nicholson, M.Ā P. Deisenroth, and J.Ā Hensman, ā€œIdentification of Gaussian process state space models,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, United states, Dec. 2017, pp. 5309–5319.
  22. A.Ā Doerr, C.Ā Daniel, M.Ā Schiegg, N.-T. Duy, S.Ā Schaal, M.Ā Toussaint, and T.Ā Sebastian, ā€œProbabilistic recurrent state-space models,ā€ in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jul. 2018, pp. 1280–1289.
  23. A.Ā D. Ialongo, M.Ā vanĀ der Wilk, J.Ā Hensman, and C.Ā E. Rasmussen, ā€œOvercoming mean-field approximations in recurrent Gaussian process models,ā€ in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, CA, United states, Jun. 2019, pp. 2931–2940.
  24. S.Ā Curi, S.Ā Melchior, F.Ā Berkenkamp, and A.Ā Krause, ā€œStructured variational inference in partially observable unstable Gaussian process state space models,ā€ in Proc. Learning for Dynamics and Control (L4DC), Virtual, Online, Jun. 2020, pp. 147–157.
  25. J.Ā Lindinger, B.Ā Rakitsch, and C.Ā Lippert, ā€œLaplace approximated Gaussian process state-space models,ā€ in Proc. Conf. Uncertain. Artif. Intell. (UAI), Eindhoven, Netherlands, Aug. 2022.
  26. M.Ā Titsias, ā€œVariational learning of inducing variables in sparse Gaussian processes,ā€ in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Clearwater, FL, United states, Apr. 2009, pp. 567–574.
  27. D.Ā P. Kingma and M.Ā Welling, ā€œAn introduction to variational autoencoders,ā€ Found. Trends Mach. Learn., vol.Ā 12, no.Ā 4, pp. 307–392, Nov. 2019.
  28. R.Ā E. Turner and M.Ā Sahani, ā€œTwo problems with variational expectation maximisation for time-series models,ā€ in Bayesian Time series models.Ā Ā Ā Cambridge University Press, 2011, ch.Ā 5, pp. 109–130.
  29. Y.Ā Liu and P.Ā M. Djurić, ā€œGaussian process state-space models with time-varying parameters and inducing points,ā€ in Proc. European Signal Proces. Conf. (EUSIPCO), Amsterdam, Netherlands, Jan. 2021, pp. 1462–1466.
  30. Y.Ā Liu, M.Ā Ajirak, and P.Ā M. Djurić, ā€œSequential estimation of Gaussian process-based deep state-space models,ā€ IEEE Trans. Signal Process., vol.Ā 71, pp. 2968–2980, Aug. 2023.
  31. Z.Ā Lin, L.Ā Cheng, F.Ā Yin, L.Ā Xu, and S.Ā Cui, ā€œOutput-dependent Gaussian process state-space model,ā€ in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Rhodes, Greek, Jun. 2023, pp. 1–5.
  32. Z.Ā Lin, F.Ā Yin, and J.Ā MaroƱas, ā€œTowards flexibility and interpretability of Gaussian process state-space model,ā€ arXiv preprint arXiv:2301.08843, 2023.
  33. Z.Ā Lin, J.Ā MaroƱas, Y.Ā Li, F.Ā Yin, and S.Ā Theodoridis, ā€œTowards efficient modeling and inference in multi-dimensional Gaussian process state-space models,ā€ arXiv preprint arXiv:2309.01074, 2023.
  34. X.Ā Fan, E.Ā V. Bonilla, T.Ā O’Kane, and S.Ā A. Sisson, ā€œFree-form variational inference for Gaussian process state-space models,ā€ in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023, pp. 9603–9622.
  35. T.Ā Chen, E.Ā Fox, and C.Ā Guestrin, ā€œStochastic gradient Hamiltonian Monte Carlo,ā€ in Proc. Int. Conf. Mach. Learn. (ICML), Beijing, China, Jun. 2014, pp. 1683–1691.
  36. L.Ā Cheng, F.Ā Yin, S.Ā Theodoridis, S.Ā Chatzis, and T.-H. Chang, ā€œRethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling,ā€ IEEE Signal Process. Mag., vol.Ā 39, no.Ā 6, pp. 18–52, Nov. 2022.
  37. J.Ā Courts, A.Ā G. Wills, and T.Ā B. Schƶn, ā€œGaussian variational state estimation for nonlinear state-space models,ā€ IEEE Trans. Signal Process., vol.Ā 69, pp. 5979–5993, Oct. 2021.
  38. R.Ā Krishnan, U.Ā Shalit, and D.Ā Sontag, ā€œStructured inference networks for nonlinear state space models,ā€ in Proc. AAAI Conf. Artif. Intell. (AAAI), San Francisco, CA, United states, Feb. 2017, pp. 2101–2109.
  39. A.Ā Paszke, S.Ā Gross, F.Ā Massa, A.Ā Lerer, J.Ā Bradbury, G.Ā Chanan, T.Ā Killeen, Z.Ā Lin, N.Ā Gimelshein, L.Ā Antiga etĀ al., ā€œPytorch: an imperative style, high-performance deep learning library,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019, pp. 8026–8037.
  40. M.Ā Roth, G.Ā Hendeby, C.Ā Fritsche, and F.Ā Gustafsson, ā€œThe ensemble Kalman filter: A signal processing perspective,ā€ EURASIP J. Adv. Signal Process., vol. 2017, pp. 1–16, Dec. 2017.
  41. J.Ā Hensman, N.Ā Fusi, and N.Ā D. Lawrence, ā€œGaussian processes for big data,ā€ in Proc. Conf. Uncertain. Artif. Intell. (UAI), Bellevue, WA, United states, Jul. 2013, pp. 282–290.
  42. M.Ā D. Hoffman, D.Ā M. Blei, C.Ā Wang, and J.Ā Paisley, ā€œStochastic variational inference,ā€ J. Mach. Learn. Res, vol.Ā 14, no.Ā 40, pp. 1303–1347, May 2013.
  43. D.Ā P. Kingma and J.Ā Ba, ā€œAdam: A method for stochastic optimization,ā€ in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, United states, May 2015.
  44. J.Ā W. Tukey, ā€œThe future of data analysis,ā€ Ann. Math. Stat., vol.Ā 33, no.Ā 1, pp. 1–67, Mar. 1962.
  45. C.Ā A. Naesseth, F.Ā Lindsten, and T.Ā B. Schƶn, ā€œHigh-dimensional filtering using nested sequential monte carlo,ā€ IEEE Trans. Signal Process., vol.Ā 67, no.Ā 16, pp. 4177–4188, Jul. 2019.
  46. M.Ā Katzfuss, J.Ā R. Stroud, and C.Ā K. Wikle, ā€œUnderstanding the ensemble Kalman filter,ā€ Amer. Stat., vol.Ā 70, no.Ā 4, pp. 350–357, Oct. 2016.
  47. A.Ā Campbell, Y.Ā Shi, T.Ā Rainforth, and A.Ā Doucet, ā€œOnline variational filtering and parameter learning,ā€ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Virtual, Online, Dec. 2021, pp. 18 633–18 645.
  48. C.Ā Rosato, L.Ā Devlin, V.Ā Beraud, P.Ā Horridge, T.Ā B. Schƶn, and S.Ā Maskell, ā€œEfficient learning of the parameters of non-linear models using differentiable resampling in particle filters,ā€ IEEE Trans. Signal Process., vol.Ā 70, pp. 3676–3692, Jul. 2022.
  49. Y.Ā Chen, D.Ā Sanz-Alonso, and R.Ā Willett, ā€œAutodifferentiable ensemble Kalman filters,ā€ SIAM J. Math. Data Sci., vol.Ā 4, no.Ā 2, pp. 801–833, Jun. 2022.
  50. ——, ā€œReduced-order autodifferentiable ensemble Kalman filters,ā€ Inverse Probl., vol.Ā 39, no.Ā 12, p. 124001, Oct. 2023.
  51. T.Ā Ishizone, T.Ā Higuchi, and K.Ā Nakamura, ā€œEnsemble Kalman variational objective: A variational inference framework for sequential variational auto-encoders,ā€ Nonlinear Theory and Its Applications, IEICE, vol.Ā 14, no.Ā 4, pp. 691–717, Oct. 2023.
  52. J.Ā Courts, A.Ā G. Wills, T.Ā B. Schƶn, and B.Ā Ninness, ā€œVariational system identification for nonlinear state-space models,ā€ Automatica, vol. 147, p. 110687, Jan. 2023.
  53. K.Ā D. Polyzos, Q.Ā Lu, and G.Ā B. Giannakis, ā€œEnsemble Gaussian processes for online learning over graphs with adaptivity and scalability,ā€ IEEE Trans. Signal Process., vol.Ā 70, pp. 17–30, Oct. 2021.
  54. Y.Ā Zhao, J.Ā Nassar, I.Ā Jordan, M.Ā Bugallo, and I.Ā M. Park, ā€œStreaming variational Monte Carlo,ā€ IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 45, no.Ā 1, pp. 1150–1161, Feb. 2022.
  55. M.Ā Dowling, Y.Ā Zhao, and I.Ā M. Park, ā€œReal-time variational method for learning neural trajectory and its dynamics,ā€ in Proc. Int. Conf. Learn. Represent. (ICLR), 2023.
  56. Y.Ā Zhao and I.Ā M. Park, ā€œVariational online learning of neural dynamics,ā€ Front. Comput. Neurosci., vol.Ā 14, p.Ā 71, Oct. 2020.
  57. S.Ā Linderman, M.Ā Johnson, A.Ā Miller, R.Ā Adams, D.Ā Blei, and L.Ā Paninski, ā€œBayesian learning and inference in recurrent switching linear dynamical systems,ā€ in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Fort Lauderdale, FL, United states, Apr. 2017, pp. 914–922.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.