Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference (2312.05910v5)
Abstract: The Gaussian process state-space models (GPSSMs) represent a versatile class of data-driven nonlinear dynamical system models. However, the presence of numerous latent variables in GPSSM incurs unresolved issues for existing variational inference approaches, particularly under the more realistic non-mean-field (NMF) assumption, including extensive training effort, compromised inference accuracy, and infeasibility for online applications, among others. In this paper, we tackle these challenges by incorporating the ensemble Kalman filter (EnKF), a well-established model-based filtering technique, into the NMF variational inference framework to approximate the posterior distribution of the latent states. This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO). Moreover, owing to the streamlined parameterization via the EnKF, the new GPSSM model can be easily accommodated in online learning applications. We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting. We also provide detailed analysis and fresh insights for the proposed algorithms. Comprehensive evaluation across diverse real and synthetic datasets corroborates the superior learning and inference performance of our EnKF-aided variational inference algorithms compared to existing methods.
- Z.Ā Yan, P.Ā Cheng, Z.Ā Chen, Y.Ā Li, and B.Ā Vucetic, āGaussian process reinforcement learning for fast opportunistic spectrum access,ā IEEE Trans. Signal Process., vol.Ā 68, pp. 2613ā2628, Apr. 2020.
- K.Ā Arulkumaran, M.Ā P. Deisenroth, M.Ā Brundage, and A.Ā A. Bharath, āDeep reinforcement learning: A brief survey,ā IEEE Signal Process. Mag., vol.Ā 34, no.Ā 6, pp. 26ā38, Nov. 2017.
- A.Ā M. Alaa and M.Ā vanĀ der Schaar, āAttentive state-space modeling of disease progression,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec. 2019, pp. 11ā338ā11ā348.
- G.Ā Revach, N.Ā Shlezinger, X.Ā Ni, A.Ā L. Escoriza, R.Ā J. VanĀ Sloun, and Y.Ā C. Eldar, āKalmanNet: Neural network aided Kalman filtering for partially known dynamics,ā IEEE Trans. Signal Process., vol.Ā 70, pp. 1532ā1547, Mar. 2022.
- R.Ā Frigola, āBayesian time series learning with Gaussian processes,ā Ph.D. dissertation, University of Cambridge, 2015.
- J.Ā M. Wang, D.Ā J. Fleet, and A.Ā Hertzmann, āGaussian process dynamical models for human motion,ā IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 30, no.Ā 2, pp. 283ā298, Dec. 2007.
- R.Ā Turner, M.Ā Deisenroth, and C.Ā Rasmussen, āState-space inference and learning with Gaussian processes,ā in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Sardinia, Italy, May 2010, pp. 868ā875.
- M.Ā P. Deisenroth, D.Ā Fox, and C.Ā E. Rasmussen, āGaussian processes for data-efficient learning in robotics and control,ā IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 37, no.Ā 2, pp. 408ā423, Nov. 2013.
- M.Ā P. Deisenroth, R.Ā D. Turner, M.Ā F. Huber, U.Ā D. Hanebeck, and C.Ā E. Rasmussen, āRobust filtering and smoothing with Gaussian processes,ā IEEE Trans. Autom. Control, vol.Ā 57, no.Ā 7, pp. 1865ā1871, Dec. 2011.
- J.Ā Ko and D.Ā Fox, āGP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models,ā Auton. Robots, vol.Ā 27, no.Ā 1, pp. 75ā90, Jul. 2009.
- āā, āLearning GP-BayesFilters via Gaussian process latent variable models,ā Auton. Robots, vol.Ā 30, no.Ā 1, pp. 3ā23, Oct. 2011.
- Y.Ā Zhao, C.Ā Fritsche, G.Ā Hendeby, F.Ā Yin, T.Ā Chen, and F.Ā Gunnarsson, āCramĆ©rāRao bounds for filtering based on Gaussian process state-space models,ā IEEE Trans. Signal Process., vol.Ā 67, no.Ā 23, pp. 5936ā5951, Oct. 2019.
- A.Ā Xie, F.Ā Yin, B.Ā Ai, S.Ā Zhang, and S.Ā Cui, āLearning while tracking: A practical system based on variational Gaussian process state-space model and smartphone sensory data,ā in Proc. Int. Conf. Inf. Fusion (FUSION), Rustenburg, South Africa, Jul. 2020, pp. 1ā7.
- R.Ā Frigola, F.Ā Lindsten, T.Ā B. Schƶn, and C.Ā E. Rasmussen, āBayesian inference and learning in Gaussian process state-space models with particle MCMC,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Lake Tahoe, NV, United states, Dec. 2013, pp. 3156ā3164.
- A.Ā Svensson, A.Ā Solin, S.Ā SƤrkkƤ, and T.Ā Schƶn, āComputationally efficient Bayesian learning of Gaussian process state space models,ā in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Cadiz, Spain, May 2016, pp. 213ā221.
- A.Ā Svensson and T.Ā B. Schƶn, āA flexible stateāspace model for learning nonlinear dynamical systems,ā Automatica, vol.Ā 80, pp. 189ā199, Jun. 2017.
- K.Ā Berntorp, āOnline Bayesian inference and learning of Gaussian-process stateāspace models,ā Automatica, vol. 129, p. 109613, Jul. 2021.
- A.Ā Solin and S.Ā SƤrkkƤ, āHilbert space methods for reduced-rank Gaussian process regression,ā Stat. Comput., vol.Ā 30, no.Ā 2, pp. 419ā446, Mar. 2020.
- R.Ā Frigola, Y.Ā Chen, and C.Ā E. Rasmussen, āVariational Gaussian process state-space models,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Montreal, QC, Canada, Dec. 2014, pp. 3680ā3688.
- A.Ā J. McHutchon, āNonlinear modelling and control using Gaussian processes,ā Ph.D. dissertation, University of Cambridge, 2014.
- S.Ā Eleftheriadis, T.Ā Nicholson, M.Ā P. Deisenroth, and J.Ā Hensman, āIdentification of Gaussian process state space models,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, United states, Dec. 2017, pp. 5309ā5319.
- A.Ā Doerr, C.Ā Daniel, M.Ā Schiegg, N.-T. Duy, S.Ā Schaal, M.Ā Toussaint, and T.Ā Sebastian, āProbabilistic recurrent state-space models,ā in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jul. 2018, pp. 1280ā1289.
- A.Ā D. Ialongo, M.Ā vanĀ der Wilk, J.Ā Hensman, and C.Ā E. Rasmussen, āOvercoming mean-field approximations in recurrent Gaussian process models,ā in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, CA, United states, Jun. 2019, pp. 2931ā2940.
- S.Ā Curi, S.Ā Melchior, F.Ā Berkenkamp, and A.Ā Krause, āStructured variational inference in partially observable unstable Gaussian process state space models,ā in Proc. Learning for Dynamics and Control (L4DC), Virtual, Online, Jun. 2020, pp. 147ā157.
- J.Ā Lindinger, B.Ā Rakitsch, and C.Ā Lippert, āLaplace approximated Gaussian process state-space models,ā in Proc. Conf. Uncertain. Artif. Intell. (UAI), Eindhoven, Netherlands, Aug. 2022.
- M.Ā Titsias, āVariational learning of inducing variables in sparse Gaussian processes,ā in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Clearwater, FL, United states, Apr. 2009, pp. 567ā574.
- D.Ā P. Kingma and M.Ā Welling, āAn introduction to variational autoencoders,ā Found. Trends Mach. Learn., vol.Ā 12, no.Ā 4, pp. 307ā392, Nov. 2019.
- R.Ā E. Turner and M.Ā Sahani, āTwo problems with variational expectation maximisation for time-series models,ā in Bayesian Time series models.Ā Ā Ā Cambridge University Press, 2011, ch.Ā 5, pp. 109ā130.
- Y.Ā Liu and P.Ā M. DjuriÄ, āGaussian process state-space models with time-varying parameters and inducing points,ā in Proc. European Signal Proces. Conf. (EUSIPCO), Amsterdam, Netherlands, Jan. 2021, pp. 1462ā1466.
- Y.Ā Liu, M.Ā Ajirak, and P.Ā M. DjuriÄ, āSequential estimation of Gaussian process-based deep state-space models,ā IEEE Trans. Signal Process., vol.Ā 71, pp. 2968ā2980, Aug. 2023.
- Z.Ā Lin, L.Ā Cheng, F.Ā Yin, L.Ā Xu, and S.Ā Cui, āOutput-dependent Gaussian process state-space model,ā in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Rhodes, Greek, Jun. 2023, pp. 1ā5.
- Z.Ā Lin, F.Ā Yin, and J.Ā MaroƱas, āTowards flexibility and interpretability of Gaussian process state-space model,ā arXiv preprint arXiv:2301.08843, 2023.
- Z.Ā Lin, J.Ā MaroƱas, Y.Ā Li, F.Ā Yin, and S.Ā Theodoridis, āTowards efficient modeling and inference in multi-dimensional Gaussian process state-space models,ā arXiv preprint arXiv:2309.01074, 2023.
- X.Ā Fan, E.Ā V. Bonilla, T.Ā OāKane, and S.Ā A. Sisson, āFree-form variational inference for Gaussian process state-space models,ā in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023, pp. 9603ā9622.
- T.Ā Chen, E.Ā Fox, and C.Ā Guestrin, āStochastic gradient Hamiltonian Monte Carlo,ā in Proc. Int. Conf. Mach. Learn. (ICML), Beijing, China, Jun. 2014, pp. 1683ā1691.
- L.Ā Cheng, F.Ā Yin, S.Ā Theodoridis, S.Ā Chatzis, and T.-H. Chang, āRethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling,ā IEEE Signal Process. Mag., vol.Ā 39, no.Ā 6, pp. 18ā52, Nov. 2022.
- J.Ā Courts, A.Ā G. Wills, and T.Ā B. Schƶn, āGaussian variational state estimation for nonlinear state-space models,ā IEEE Trans. Signal Process., vol.Ā 69, pp. 5979ā5993, Oct. 2021.
- R.Ā Krishnan, U.Ā Shalit, and D.Ā Sontag, āStructured inference networks for nonlinear state space models,ā in Proc. AAAI Conf. Artif. Intell. (AAAI), San Francisco, CA, United states, Feb. 2017, pp. 2101ā2109.
- A.Ā Paszke, S.Ā Gross, F.Ā Massa, A.Ā Lerer, J.Ā Bradbury, G.Ā Chanan, T.Ā Killeen, Z.Ā Lin, N.Ā Gimelshein, L.Ā Antiga etĀ al., āPytorch: an imperative style, high-performance deep learning library,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019, pp. 8026ā8037.
- M.Ā Roth, G.Ā Hendeby, C.Ā Fritsche, and F.Ā Gustafsson, āThe ensemble Kalman filter: A signal processing perspective,ā EURASIP J. Adv. Signal Process., vol. 2017, pp. 1ā16, Dec. 2017.
- J.Ā Hensman, N.Ā Fusi, and N.Ā D. Lawrence, āGaussian processes for big data,ā in Proc. Conf. Uncertain. Artif. Intell. (UAI), Bellevue, WA, United states, Jul. 2013, pp. 282ā290.
- M.Ā D. Hoffman, D.Ā M. Blei, C.Ā Wang, and J.Ā Paisley, āStochastic variational inference,ā J. Mach. Learn. Res, vol.Ā 14, no.Ā 40, pp. 1303ā1347, May 2013.
- D.Ā P. Kingma and J.Ā Ba, āAdam: A method for stochastic optimization,ā in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, United states, May 2015.
- J.Ā W. Tukey, āThe future of data analysis,ā Ann. Math. Stat., vol.Ā 33, no.Ā 1, pp. 1ā67, Mar. 1962.
- C.Ā A. Naesseth, F.Ā Lindsten, and T.Ā B. Schƶn, āHigh-dimensional filtering using nested sequential monte carlo,ā IEEE Trans. Signal Process., vol.Ā 67, no.Ā 16, pp. 4177ā4188, Jul. 2019.
- M.Ā Katzfuss, J.Ā R. Stroud, and C.Ā K. Wikle, āUnderstanding the ensemble Kalman filter,ā Amer. Stat., vol.Ā 70, no.Ā 4, pp. 350ā357, Oct. 2016.
- A.Ā Campbell, Y.Ā Shi, T.Ā Rainforth, and A.Ā Doucet, āOnline variational filtering and parameter learning,ā in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Virtual, Online, Dec. 2021, pp. 18ā633ā18ā645.
- C.Ā Rosato, L.Ā Devlin, V.Ā Beraud, P.Ā Horridge, T.Ā B. Schƶn, and S.Ā Maskell, āEfficient learning of the parameters of non-linear models using differentiable resampling in particle filters,ā IEEE Trans. Signal Process., vol.Ā 70, pp. 3676ā3692, Jul. 2022.
- Y.Ā Chen, D.Ā Sanz-Alonso, and R.Ā Willett, āAutodifferentiable ensemble Kalman filters,ā SIAM J. Math. Data Sci., vol.Ā 4, no.Ā 2, pp. 801ā833, Jun. 2022.
- āā, āReduced-order autodifferentiable ensemble Kalman filters,ā Inverse Probl., vol.Ā 39, no.Ā 12, p. 124001, Oct. 2023.
- T.Ā Ishizone, T.Ā Higuchi, and K.Ā Nakamura, āEnsemble Kalman variational objective: A variational inference framework for sequential variational auto-encoders,ā Nonlinear Theory and Its Applications, IEICE, vol.Ā 14, no.Ā 4, pp. 691ā717, Oct. 2023.
- J.Ā Courts, A.Ā G. Wills, T.Ā B. Schƶn, and B.Ā Ninness, āVariational system identification for nonlinear state-space models,ā Automatica, vol. 147, p. 110687, Jan. 2023.
- K.Ā D. Polyzos, Q.Ā Lu, and G.Ā B. Giannakis, āEnsemble Gaussian processes for online learning over graphs with adaptivity and scalability,ā IEEE Trans. Signal Process., vol.Ā 70, pp. 17ā30, Oct. 2021.
- Y.Ā Zhao, J.Ā Nassar, I.Ā Jordan, M.Ā Bugallo, and I.Ā M. Park, āStreaming variational Monte Carlo,ā IEEE Trans. Pattern Anal. Mach. Intell., vol.Ā 45, no.Ā 1, pp. 1150ā1161, Feb. 2022.
- M.Ā Dowling, Y.Ā Zhao, and I.Ā M. Park, āReal-time variational method for learning neural trajectory and its dynamics,ā in Proc. Int. Conf. Learn. Represent. (ICLR), 2023.
- Y.Ā Zhao and I.Ā M. Park, āVariational online learning of neural dynamics,ā Front. Comput. Neurosci., vol.Ā 14, p.Ā 71, Oct. 2020.
- S.Ā Linderman, M.Ā Johnson, A.Ā Miller, R.Ā Adams, D.Ā Blei, and L.Ā Paninski, āBayesian learning and inference in recurrent switching linear dynamical systems,ā in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Fort Lauderdale, FL, United states, Apr. 2017, pp. 914ā922.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.